2D Semiconductors Found to Be Close-To-Ideal Fractional Quantum Hall Platform

Columbia University researchers report that they have observed a quantum fluid known as the fractional quantum Hall states (FQHS), one of the most delicate phases of matter, for the first time in a monolayer 2D semiconductor. Their findings demonstrate the excellent intrinsic quality of 2D semiconductors and establish them as a unique test platform for future applications in quantum computing.

Read more

“One-Way” Electronic Devices Enter the Mainstream

Columbia engineers are the first to build a high-performance non-reciprocal device on a compact chip with a performance 25 times better than previous work. The new chip, which can handle several watts of power (enough for cellphone transmitters that put out a watt or so of power), was the leading performer in a DARPA SPAR program to miniaturize these devices and improve performance metrics.

Read more

ORNL, LANL-developed quantum technologies go the distance

For the second year in a row, a team of scientists from DOE’s Oak Ridge and Los Alamos National Laboratories led a demonstration hosted by EPB, a utility and telecommunications company, to test quantum-based technologies that could improve the cybersecurity, longevity and efficiency of the nation’s power grid. Among other successes, the researchers drastically increased the range these resources can cover in collaboration with new industry partner Qubitekk.

Read more

Rutgers’ Greg Moore Elected to National Academy of Sciences

Rutgers Professor Gregory W. Moore, a renowned physicist who seeks a unified understanding of the basic forces and fundamental particles in the universe, has been elected to the prestigious National Academy of Sciences. Moore, Board of Governors Professor in the Department of Physics and Astronomy at Rutgers University–New Brunswick, joins 119 other new academy members and 26 international members this year who were recognized for their distinguished and ongoing achievements in original research.

Read more

Broadband Enhancement Relies on Precise Tilt

If a photon source could be placed on a single chip and made to produce photons at a high rate, this could enable high-speed quantum communication or information processing. In Applied Physics Reviews, a simple on-chip photon source using a hyperbolic metamaterial is proposed, and investigators carried out calculations to show that a prototype arranged in a precise way can overcome problems of low efficiency and allow for high repetition rates for on-chip photon sources.

Read more

Creating the Heart of a Quantum Computer: Developing Qubits

To use quantum computers on a large scale, we need to improve the technology at their heart – qubits. Qubits are the quantum version of conventional computers’ most basic form of information, bits. The DOE’s Office of Science is supporting research into developing the ingredients and recipes to build these challenging qubits.

Read more