Through the quantum looking glass

An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published in the journal Science.

‘Beam Me Up:’ Nation’s First Quantum Drone Provides Unrivaled Security

Researchers are developing the nation’s first drone-based, mobile quantum network for unhackable wireless communication. The network includes drones, a ground station, lasers and fiber optics. In war, these drones would provide one-time crypto-keys to exchange critical information, which spies and enemies would not be able to intercept. Quantum protects information using the laws of nature and not just by a clever manmade code.

Columbia Engineers First to Observe Avalanches in Nanoparticles

Columbia Engineering researchers report the first nanomaterial that demonstrates “photon avalanching,” a process that is unrivaled in its combination of extreme nonlinear optical behavior and efficiency. The realization of photon avalanching in nanoparticle form opens up a host of sought-after applications, from real-time super-resolution optical microscopy, precise temperature and environmental sensing, and infrared light detection, to optical analog-to-digital conversion and quantum sensing.

Shine On: Avalanching Nanoparticles Break Barriers to Imaging Cells in Real Time

A team of researchers co-led by Berkeley Lab and Columbia University has developed a new material called avalanching nanoparticles that, when used as a microscopic probe, offers a simpler approach to taking high-resolution, real-time snapshots of a cell’s inner workings at the nanoscale.

Broadband Enhancement Relies on Precise Tilt

If a photon source could be placed on a single chip and made to produce photons at a high rate, this could enable high-speed quantum communication or information processing. In Applied Physics Reviews, a simple on-chip photon source using a hyperbolic metamaterial is proposed, and investigators carried out calculations to show that a prototype arranged in a precise way can overcome problems of low efficiency and allow for high repetition rates for on-chip photon sources.