Nation’s first quantum startup accelerator, Duality, launches at the University of Chicago’s Polsky Center and the Chicago Quantum Exchange

The University of Chicago’s Polsky Center for Entrepreneurship and Innovation and the Chicago Quantum Exchange today announced the launch of Duality, the first accelerator program in the nation that is exclusively dedicated to startup companies focused on quantum science and technology—a rapidly emerging area that is poised to drive transformative advances across multiple industries.

Read more

Designing Materials from First Principles with Yuan Ping

The UC Santa Cruz professor uses computing resources at Brookhaven Lab’s Center for Functional Nanomaterials to run calculations for quantum information science, spintronics, and energy research.

Read more

Eight ways Argonne advanced science in 2020

Throughout 2020, Argonne answered fundamental science questions and provided solutions for the world.

Read more

Quantifying Quantumness: A Mathematical Project ‘of Immense Beauty’

Large objects behave in accordance with the classical laws of mechanics formulated by Sir Isaac Newton and small ones are governed by quantum mechanics, where an object can behave as both a wave and a particle. The boundary between the classical and quantum realms has always been of great interest. Research reported in AVS Quantum Science, considers the question of what makes something “more quantum” than another — is there a way to characterize “quantumness”?

Read more

All together now: Experiments with twisted 2D materials catch electrons behaving collectively

A team led by the University of Washington reports that carefully constructed stacks of graphene — a 2D form of carbon — can exhibit highly correlated electron properties. The team also found evidence that this type of collective behavior likely relates to the emergence of exotic magnetic states.

Read more

Six Argonne researchers receive DOE Early Career Research Program awards

Argonne scientists Michael Bishof, Maria Chan, Marco Govini, Alessandro Lovato, Bogdan Nicolae and Stefan Wild have received funding for their research as part of DOE’s Early Career Research Program.

Read more

Joined nano-triangles pave the way to magnetic carbon materials

Graphene triangles with an edge length of only a few atoms behave like peculiar quantum magnets. When two of these nano-triangles are joined, a “quantum entanglement” of their magnetic moments takes place: the structure becomes antiferromagnetic. This could be a breakthrough for future magnetic materials, and another step towards spintronics. An international group led by Empa researchers recently published the results in the journal “Angewandte Chemie”.

Read more

Theoretical breakthrough shows quantum fluids rotate by corkscrew mechanism

Scientists performed simulations of merging rotating superfluids, revealing a peculiar corkscrew-shaped mechanism that drives the fluids into rotation without the need for viscosity.

Read more

ORNL, LANL-developed quantum technologies go the distance

For the second year in a row, a team of scientists from DOE’s Oak Ridge and Los Alamos National Laboratories led a demonstration hosted by EPB, a utility and telecommunications company, to test quantum-based technologies that could improve the cybersecurity, longevity and efficiency of the nation’s power grid. Among other successes, the researchers drastically increased the range these resources can cover in collaboration with new industry partner Qubitekk.

Read more

Making a Material World Better, Faster Now: Q&A With Materials Project Director Kristin Persson

Berkeley Lab’s Kristin Persson shares her thoughts on what inspired her to launch the Materials Project online database, the future of materials research and machine learning, and how she found her own way into a STEM career.

Read more

Fourth cohort of 6 innovators selected for Chain Reaction Innovations program

Six new innovators will be joining Chain Reaction Innovations (CRI), the entrepreneurship program at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, as part of the elite program’s fourth cohort.

Read more

Argonne’s Valerii Vinokur awarded Fritz London Prize

Valerii Vinokur, a senior scientist and distinguished fellow at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, has been awarded the Fritz London Memorial Prize for his work in condensed matter and theoretical physics.

Read more

How a Magnet Could Help Boost Understanding of Superconductivity

Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity. A Rutgers co-authored study of the unusual ferromagnetic material appears in the journal Nature.

Read more

A joint venture at the nanoscale

Scientists at Argonne National Laboratory report fabricating and testing a superconducting nanowire device applicable to high-speed photon counting. This pivotal invention will allow nuclear physics experiments that were previously thought impossible.

Read more

Creating the Heart of a Quantum Computer: Developing Qubits

To use quantum computers on a large scale, we need to improve the technology at their heart – qubits. Qubits are the quantum version of conventional computers’ most basic form of information, bits. The DOE’s Office of Science is supporting research into developing the ingredients and recipes to build these challenging qubits.

Read more

Tiny Quantum Sensors Watch Materials Transform Under Pressure

Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

Read more

The Beauty of Imperfections: Linking Atomic Defects to 2D Materials’ Electronic Properties

Scientists at Berkeley Lab have revealed how atomic defects emerge in transition metal dichalcogenides, and how those defects shape the 2D material’s electronic properties. Their findings could provide a versatile yet targeted platform for designing 2D materials for quantum information science.

Read more

Structured Light Promises Path to Faster, More Secure Communications

Quantum mechanics has come a long way during the past 100 years but still has a long way to go. In AVS Quantum Science, researchers from the University of Witwatersrand in South Africa review the progress being made in using structured light in quantum protocols to create a larger encoding alphabet, stronger security and better resistance to noise.

Read more

Seeing sound: Scientists observe how acoustic interactions change materials at the atomic level

By using sound waves, scientists have begun to explore fundamental stress behaviors in a crystalline material that could form the basis for quantum information technologies.

Read more

2000 atoms in two places at once

The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna in collaboration with the University of Basel. Hot, complex molecules composed of nearly two thousand atoms were brought into a quantum superposition and made to interfere. By confirming this phenomenon – “the heart of quantum mechanics”, in Richard Feynman’s words – on a new mass scale, improved constraints on alternative theories to quantum mechanics have been placed. The work will be published in Nature Physics.

Read more

Blavatnik Awards for Young Scientists Announces 2019 National Laureates

An ecologist from Stony Brook University, a theoretical physicist from University of Colorado Boulder and a chemical biologist from Harvard

Read more