Creating the Heart of a Quantum Computer: Developing Qubits

To use quantum computers on a large scale, we need to improve the technology at their heart – qubits. Qubits are the quantum version of conventional computers’ most basic form of information, bits. The DOE’s Office of Science is supporting research into developing the ingredients and recipes to build these challenging qubits.

Read more

Tiny Quantum Sensors Watch Materials Transform Under Pressure

Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

Read more

The Beauty of Imperfections: Linking Atomic Defects to 2D Materials’ Electronic Properties

Scientists at Berkeley Lab have revealed how atomic defects emerge in transition metal dichalcogenides, and how those defects shape the 2D material’s electronic properties. Their findings could provide a versatile yet targeted platform for designing 2D materials for quantum information science.

Read more

Structured Light Promises Path to Faster, More Secure Communications

Quantum mechanics has come a long way during the past 100 years but still has a long way to go. In AVS Quantum Science, researchers from the University of Witwatersrand in South Africa review the progress being made in using structured light in quantum protocols to create a larger encoding alphabet, stronger security and better resistance to noise.

Read more

Seeing sound: Scientists observe how acoustic interactions change materials at the atomic level

By using sound waves, scientists have begun to explore fundamental stress behaviors in a crystalline material that could form the basis for quantum information technologies.

Read more

2000 atoms in two places at once

The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna in collaboration with the University of Basel. Hot, complex molecules composed of nearly two thousand atoms were brought into a quantum superposition and made to interfere. By confirming this phenomenon – “the heart of quantum mechanics”, in Richard Feynman’s words – on a new mass scale, improved constraints on alternative theories to quantum mechanics have been placed. The work will be published in Nature Physics.

Read more

Blavatnik Awards for Young Scientists Announces 2019 National Laureates

An ecologist from Stony Brook University, a theoretical physicist from University of Colorado Boulder and a chemical biologist from Harvard

Read more