Summit Helps Predict Molecular Breakups

A team used the Summit supercomputer to simulate transition metal systems—such as copper bound to molecules of nitrogen, dihydrogen, or water—and correctly predicted the amount of energy required to break apart dozens of molecular systems, paving the way for a greater understanding of these materials.

Read more

Preparing for exascale: LLNL breaks ground on computing facility upgrades

To meet the needs of tomorrow’s supercomputers, the National Nuclear Security Administration’s (NNSA’s) Lawrence Livermore National Laboratory (LLNL) has broken ground on its Exascale Computing Facility Modernization (ECFM) project, which will substantially upgrade the mechanical and electrical capabilities of the Livermore Computing Center.

Read more

Supercomputing Aids Scientists Seeking Therapies for Deadly Bacterial Disease

A team of scientists led by Abhishek Singharoy at Arizona State University used the Summit supercomputer at the Oak Ridge Leadership Computing Facility to simulate the structure of a possible drug target for the bacterium that causes rabbit fever.

Read more

Simulations forecast nationwide increase in human exposure to extreme climate events

Using ORNL’s now-decommissioned Titan supercomputer, a team of researchers estimated the combined consequences of many different extreme climate events at the county level, a unique approach that provided unprecedented regional and national climate projections that identified the areas most likely to face climate-related challenges.

Read more

Four Years of Calculations Lead to New Insights into Muon Anomaly

Two decades ago, an experiment at Brookhaven National Laboratory pinpointed a mysterious mismatch between established particle physics theory and actual lab measurements. A multi-institutional research team (including Brookhaven, Columbia University, and the universities of Connecticut, Nagoya and Regensburg, RIKEN) have used Argonne National Laboratory’s Mira supercomputer to help narrow down the possible explanations for the discrepancy, delivering a newly precise theoretical calculation that refines one piece of this very complex puzzle.

Read more

Major upgrades of particle detectors and electronics prepare CERN experiment to stream a data tsunami

For an experiment that will generate big data at unprecedented rates, physicists led design, development, mass production and delivery of an upgrade of novel particle detectors and state-of-the art electronics.

Read more

Advanced software framework expedites quantum-classical programming

An ORNL team developed the XACC software framework to help researchers harness the potential power of quantum processing units, or QPUs. XACC offloads portions of quantum-classical computing workloads from the host CPU to an attached quantum accelerator, which calculates results and sends them back to the original system.

Read more

Upgrades for LLNL supercomputer from AMD, Penguin Computing aid COVID-19 research

To assist in the COVID-19 research effort, Lawrence Livermore National Laboratory, Penguin Computing and AMD have reached an agreement to upgrade the Lab’s unclassified, Penguin Computing-built Corona high performance computing (HPC) cluster with an in-kind contribution of cutting-edge AMD Instinct™ accelerators, expected to nearly double the peak performance of the machine.

Read more