Argonne AI methods unravel mysteries of SARS-CoV-2 viral-human cell interaction

Using a combination of AI and supercomputing resources, Argonne researchers are examining the dynamics of the SARS-CoV-2 spike protein to determine how it fuses with the human host cell, advancing the search for drug treatments.

Read more

Machine Learning Speeds Molecular Motion Modeling

Molecular dynamics is central to many questions in modern chemistry. However, computer models of molecular dynamics must balance computational cost and accuracy. Scientists have now used a machine learning technique called transfer learning to create a novel model of molecular motion that is as accurate as calculations that use quantum-mechanical physics but much faster.

Read more

Supercomputing Aids Scientists Seeking Therapies for Deadly Bacterial Disease

A team of scientists led by Abhishek Singharoy at Arizona State University used the Summit supercomputer at the Oak Ridge Leadership Computing Facility to simulate the structure of a possible drug target for the bacterium that causes rabbit fever.

Read more

Argonne’s researchers and facilities playing a key role in the fight against COVID-19

Argonne scientists are working around the clock to analyze the virus to find new treatments and cures, predict how it will propagate through the population, and make sure that our supply chains remain intact.

Read more