ORNL expertise supports latest IPCC report and efforts to understand, address climate change

Improved data, models and analyses from Oak Ridge National Laboratory scientists and many other researchers in the latest global climate assessment report provide new levels of certainty about what the future holds for the planet and highlight the urgency of decarbonization to avoid the most severe impacts.

For Better Predictions, Researchers Evaluate Tropical Cyclone Simulation in the Energy Exascale Earth System Model

Infrastructure planning requires accurately predicting how tropical cyclones respond to environmental changes. To make those predictions, researchers use Earth system models. In this research, scientists analyzed tropical cyclones simulated by the Department of Energy’s Energy Exascale Earth System Model (E3SM). They found that high resolution is critical to simulating tropical cyclones and their interactions with the ocean.

Tiny raindrops pose big challenges: Argonne researchers improve climate models, prediction of climate change

Drizzle in marine clouds is a key parameter for achieving more accurate climate predictions. Argonne developed novel techniques to retrieve drizzle properties and will expand its research to the aerosol impact on clouds and precipitation.

Explosive Origins of ‘Secondary’ Ice—and Snow

Where does snow come from? This may seem like a simple question to ponder as half the planet emerges from a season of watching whimsical flakes fall from the sky–and shoveling them from driveways. But a new study on how water becomes ice in slightly supercooled Arctic clouds may make you rethink the simplicity of the fluffy stuff. It describes definitive, real-world evidence for “freezing fragmentation” of drizzle as a major source of ice in slightly supercooled clouds. The findings have important implications for forecasting weather and climate.

Story tips: Urban climate impacts, materials’ dual approach and healing power

ORNL identifies a statistical relationship between the growth of cities and the spread of paved surfaces. // ORNL successfully demonstrates a technique to heal dendrites that formed in a solid electrolyte. // ORNL combines additive manufacturing with conventional compression molding.

Argonne National Laboratory climate model helps Pacific Gas and Electric Company combat climate change impacts, including wildfires

Scientists at Argonne developed a climate model that projects future conditions at neighborhood-level scale across the entire United States to help PG&E plan for extreme weather events in California.

Eight ways Argonne advanced science in 2020

Throughout 2020, Argonne answered fundamental science questions and provided solutions for the world.

Urban Land and Aerosols Amplify Hazardous Weather, Steer Storms Toward Cities

Urban landscapes and human-made aerosols have the potential to not only make gusts stronger and hail larger; they can also start storms sooner and even pull them toward cities, according to new research exploring the impact of urban development on hazardous weather, led by PNNL researchers.

Error Correction Means California’s Future Wetter Winters May Never Come

California and other areas of the U.S. Southwest may see less future winter precipitation than previously projected by climate models. After probing a persistent error in widely used models, PNNL researchers estimate that California will likely experience drier winters in the future than projected by some climate models, meaning residents may see less spring runoff, higher spring temperatures, and an increased risk of wildfire in coming years.

Bridging the Model-Data Divide for Elusive Clouds

Combining large-scale atmospheric models and observations is a long-standing challenge, in part because of the mismatch between different spatial and temporal scales. For example, shallow convective clouds are so small that typical atmospheric models cannot represent individual clouds. The Department of Energy’s Large-Eddy Simulation Atmospheric Radiation Measurement Symbiotic Simulation and Observation activity seeks to bridge these scale gaps.

New Great Lakes modeling improves operational forecast system

Forecasting the water levels, temperatures, and currents of the Great Lakes is important because conditions on the lakes affect commerce, recreation, and community well-being. These forecasts comprise the Great Lakes Operational Forecast System (GLOFS), an automated model-based prediction system operated by the National Oceanic and Atmospheric Administration (NOAA). Michigan Tech helps NOAA improve the GLOFS model.

Novel Measurement and Forecasting Systems Make ‘Weathering the Storm’ More Precise

In the last several decades, more than half of the deaths associated with tropical cyclones in the U.S. were due to inland flooding. Unfortunately, current forecasting capabilities are limited. Researchers are developing a warning system for more accurate and timely detection and forecasting of inland and coastal floods, under a variety of precipitation regimes. The technology will enable local and state governments to more effectively plan and respond to tropical storms.

Study: Climate Scientists Create Model for Global Forest Growth Through 2060

In a new study, researchers at the University at Albany have turned to more than a century’s worth of data (from 1901 to 2012) in NOAA’s International Tree Ring Data Bank to both analyze historical tree growth at 3,579 forests around the world and create a model for future projections (from 2045 to 2060).

Columbia Researchers Provide New Evidence on the Reliability of Climate Modeling

Observational data of equatorial circulation pattern confirms that the pattern is weakening, a development with important consequences for future rainfall in the subtropics. Columbia Researchers Provide New Evidence on the Reliability of Climate Modeling Observational data of equatorial circulation pattern…