Pretreating Nuisance Green Algae with Lye, Urea Increases Bacterial Production of Biogas

An international research team reports their success in using urea and sodium hydroxide (NaOH, commonly known as lye or caustic soda) as a pretreatment of algae, which breaks down cellulose and more than doubles biogas production under their initial experimental conditions.

Free Online Video Series Open to the Public ‘Understanding Harmful Algal Blooms in Florida’

The free online series of short videos are designed to provide basic, jargon-free scientific information on harmful algal blooms: what they are; where they live and grow; and causes, impacts, and potential mitigation of blooms. The series is directed toward resource managers and decision-makers as well as the general public.

Rutgers Expert Available to Discuss Viral ‘Pandemics’ in Oceans

New Brunswick, N.J. (April 6, 2021) – Rutgers University–New Brunswick microbial oceanographer Kay D. Bidle is available for interviews on the persistent and profound impact of viral infections on algae in the oceans. These infections influence the Earth’s carbon cycle, which helps…

Shining, Colored LED Lighting on Microalgae for Next-Generation Biofuel

As biofuels continue to present challenges, microalgae are gaining momentum as a biofuel energy crop. In the Journal of Renewable and Sustainable Energy, researchers show how a combination of monochromatic red and blue LED illumination on one type of microalga can enhance its growth and increase the biosynthesis of critical components, such as lipids, for microalgae feedstock development. The researchers focused on Dunaliella salina, typically extracted from sea salt fields and found in salt lakes.

Fishes Contribute Roughly 1.65 Billion Tons of Carbon in Feces and Other Matter Annually

Scientists have little understanding of the role fishes play in the global carbon cycle linked to climate change, but a Rutgers-led study found that carbon in feces, respiration and other excretions from fishes – roughly 1.65 billion tons annually – make up about 16 percent of the total carbon that sinks below the ocean’s upper layers.

Bacteria and Algae Get Rides in Clouds

Human health and ecosystems could be affected by microbes including cyanobacteria and algae that hitch rides in clouds and enter soil, lakes, oceans and other environments when it rains, according to a Rutgers co-authored study.

Nuclear War Could Trigger Big El Niño and Decrease Seafood

A nuclear war could trigger an unprecedented El Niño-like warming episode in the equatorial Pacific Ocean, slashing algal populations by 40 percent and likely lowering the fish catch, according to a Rutgers-led study. The research, published in the journal Communications Earth & Environment, shows that turning to the oceans for food if land-based farming fails after a nuclear war is unlikely to be a successful strategy – at least in the equatorial Pacific.

How to Identify Heat-Stressed Corals

Researchers have found a novel way to identify heat-stressed corals, which could help scientists pinpoint the coral species that need protection from warming ocean waters linked to climate change, according to a Rutgers-led study.

FAU Receives Florida Department of Health Grant to Study Health Effects of Harmful Algal Blooms

Despite many occurrences of red tide and blue green algae in Florida waters, the understanding of the health effects of exposure to these blooms is limited. Researchers will evaluate short- and long-term health effects of exposure to harmful algal blooms (HABS) in Florida to capture key areas of human exposure and a wide demographic population profile. They also will evaluate the potential effect of exposure to COVID-19 on susceptibility to HABs and health outcomes in this study population.

Atmospheric Rivers Help Create Massive Holes in Antarctic Sea Ice

Warm, moist rivers of air in Antarctica play a key role in creating massive holes in sea ice in the Weddell Sea and may influence ocean conditions around the vast continent as well as climate change, according to Rutgers co-authored research. Scientists studied the role of long, intense plumes of warm, moist air – known as atmospheric rivers – in creating enormous openings in sea ice. They focused on the Weddell Sea region of the Southern Ocean near Antarctica, where these sea ice holes (called polynyas) infrequently develop during the winter.

How Did Red Algae Survive in Extreme Environments?

Red algae have persisted in hot springs and surrounding rocks for about 1 billion years. Now, a Rutgers-led team will investigate why these single-celled extremists have thrived in harsh environments – research that could benefit environmental cleanups and the production of biofuels and other products.

Ocean Algae Get “Coup de Grace” from Viruses

Scientists have long believed that ocean viruses always quickly kill algae, but Rutgers-led research shows they live in harmony with algae and viruses provide a “coup de grace” only when blooms of algae are already stressed and dying. The study, published in the journal Nature Communications, will likely change how scientists view viral infections of algae, also known as phytoplankton – especially the impact of viruses on ecosystem processes like algal bloom formation (and decline) and the cycling of carbon and other chemicals on Earth.

Algae in the Oceans Often Steal Genes from Bacteria

Algae in the oceans often steal genes from bacteria to gain beneficial attributes, such as the ability to tolerate stressful environments or break down carbohydrates for food, according to a Rutgers co-authored study.
The study of 23 species of brown and golden-brown algae, published in the journal Science Advances, shows for the first time that gene acquisition had a significant impact on the evolution of a massive and ancient group of algae and protists (mostly one-celled organisms including protozoa) that help form the base of oceanic food webs.

Rutgers Cooperative Extension Offers “Earth Day at Home” Webinar Series

New Brunswick, N.J. (April 16, 2020) – In celebration of the 50th anniversary of Earth Day on April 22, Rutgers Cooperative Extension will offer an “Earth Day at Home” webinar series. The webinars, on Mondays from April 20 to June…

Oysters and Clams Can be Farmed Together

Eastern oysters and three species of clams can be farmed together and flourish, potentially boosting profits of shellfish growers, according to a Rutgers University–New Brunswick study. Though diverse groups of species often outperform single-species groups, most bivalve farms in the United States and around the world grow their crops as monocultures, notes the study in the journal Marine Ecology Progress Series.

New Portable Tool Analyzes Microbes in the Environment

Imagine a device that could swiftly analyze microbes in oceans and other aquatic environments, revealing the health of these organisms – too tiny to be seen by the naked eye – and their response to threats to their ecosystems. Rutgers researchers have created just such a tool, a portable device that could be used to assess microbes, screen for antibiotic-resistant bacteria and analyze algae that live in coral reefs. Their work is published in the journal Scientific Reports.

New Method Detects Toxin Exposure from Harmful Algal Blooms in Human Urine

A newly developed method can detect even low-dose human exposure to microcystins and nodularin in human urine. During harmful algal blooms (HABs), species of cyanobacteria release toxic peptides, including microcystins and nodularin into waterways, impacting wildlife and humans living in these marine environments. These findings are the first to report microcystin concentrations directly from exposed residents impacted by cyanobacteria in Florida, and is a critical step in developing and interpreting clinical diagnostic tests for HABs exposure worldwide.

UNH Sails into the Next Generation of Ocean Mapping With NOAA Grant

Researchers at the University of New Hampshire have been awarded a three-year grant from the National Oceanic and Atmospheric Administration (NOAA) in partnership with Saildrone, Inc. of Alameda, CA, and the Monterey Bay Aquarium Research Institute (MBARI) to develop data quality tools for a new unmanned wind-powered sailboat-like vehicle capable of long-duration missions to collect vital ocean mapping information.

NUS engineers invent smartphone device that detects harmful algae in 15 minutes

A team of engineers from the National University of Singapore has developed a highly sensitive system that uses a smartphone to rapidly detect the presence of toxin-producing algae in water within 15 minutes. This technological breakthrough could play a big role in preventing the spread of harmful microorganisms in aquatic environments, which could threaten global public health and cause environmental problems.

Red Algae Thrive Despite Ancestor’s Massive Loss of Genes

You’d think that losing 25 percent of your genes would be a big problem for survival. But not for red algae, including the seaweed used to wrap sushi. An ancestor of red algae lost about a quarter of its genes roughly one billion years ago, but the algae still became dominant in near-shore coastal areas around the world, according to Rutgers University–New Brunswick Professor Debashish Bhattacharya, who co-authored a study in the journal Nature Communications.

Danforth Center to Lead DOE-Funded Research to Harness Untapped Reservoir of Plant Genes in Quest for Bioenergy Crops

The U.S. Department of Energy has selected Danforth Center Principal Investigator James Umen, Ph.D., to lead a multi-institutional collaboration that will predict functions for hundreds of uncharacterized plant genes that could be important to stress tolerance in a range of potential bioenergy crops.

Scientists Discover Key Factors in How Some Algae Absorb Solar Energy

Scientists have discovered how diatoms – a type of algae that produces 20 percent of the Earth’s oxygen – absorb solar energy for photosynthesis. The Rutgers University-led discovery, published in the journal Proceedings of the National Academy of Sciences, could help lead to more efficient and affordable algae-based biofuels and combat climate change from fossil fuel burning.