Corals Carefully Organize Proteins to Form Rock-Hard Skeletons

Charles Darwin, the British naturalist who championed the theory of evolution, noted that corals form far-reaching structures, largely made of limestone, that surround tropical islands. He didn’t know how they performed this feat. Now, Rutgers scientists have shown that coral structures consist of a biomineral containing a highly organized organic mix of proteins that resembles what is in our bones. Their study, published in the Journal of the Royal Society Interface, shows for the first time that several proteins are organized spatially – a process that’s critical to forming a rock-hard coral skeleton.

NSU & Coral Restoration Foundation™ Join Forces to Save Coral Diversity

Around the world, coral reefs are under pressure from a host of stressors, including global warming, pollution, and disease events. Now, two leading groups – Nova Southeastern University and the Coral Restoration Foundation™ – are teaming up to establish a new “coral ark” for critically endangered coral species where genetically diverse corals will be housed to bank and protect their important genetic diversity.

Big Differences in How Coral Reef Fish Larvae are Dispersed

How the larvae of colorful clownfish that live among coral reefs in the Philippines are dispersed varies widely, depending on the year and seasons – a Rutgers-led finding that could help scientists improve conservation of species. Right after most coral reef fish hatch, they join a swirling sea of plankton as tiny, transparent larvae. Then currents, winds and waves disperse them, frequently to different reefs.

How to Identify Heat-Stressed Corals

Researchers have found a novel way to identify heat-stressed corals, which could help scientists pinpoint the coral species that need protection from warming ocean waters linked to climate change, according to a Rutgers-led study.

A better understanding of coral skeleton growth suggests ways to restore reefs

In a new study, University of Wisconsin–Madison physicists observed reef-forming corals at the nanoscale and identified how they create their skeletons. The results provide an explanation for how corals are resistant to acidifying oceans and suggest that controlling water temperature, not acidity, is crucial to mitigating loss and restoring reefs.

New Portable Tool Analyzes Microbes in the Environment

Imagine a device that could swiftly analyze microbes in oceans and other aquatic environments, revealing the health of these organisms – too tiny to be seen by the naked eye – and their response to threats to their ecosystems. Rutgers researchers have created just such a tool, a portable device that could be used to assess microbes, screen for antibiotic-resistant bacteria and analyze algae that live in coral reefs. Their work is published in the journal Scientific Reports.

Rutgers Expert Available to Discuss Coral Genomics Paper

New Brunswick, N.J. (Jan. 6, 2020) – By combining a range of biological data with the first successful genome editing experiments in corals, scientists are poised for rapid advancements in understanding how coral genes function, according to a paper in…

How microbes reflect the health of coral reefs

Microorganisms play important roles in the health and protection of coral reefs, yet exploring these connections can be difficult due to the lack of unspoiled reef systems throughout the global ocean. A collaborative study led by scientists at the Woods Hole Oceanographic Institution (WHOI) and the Centro de Investigaciones Marinas – Universidad de La Habana (CIM-UH) compared seawater from 25 reefs in Cuba and the U.S. Florida Keys varying in human impact and protection, and found that those with higher microbial diversity and lower concentrations of nutrients and organic carbon—primarily caused by human activities—were markedly healthier.

Red Algae Thrive Despite Ancestor’s Massive Loss of Genes

You’d think that losing 25 percent of your genes would be a big problem for survival. But not for red algae, including the seaweed used to wrap sushi. An ancestor of red algae lost about a quarter of its genes roughly one billion years ago, but the algae still became dominant in near-shore coastal areas around the world, according to Rutgers University–New Brunswick Professor Debashish Bhattacharya, who co-authored a study in the journal Nature Communications.