Brookhaven Lab Partners in New $40 M Research Center to Convert Sunlight to Liquid Fuels

UPTON, NY–The U.S. Department of Energy (DOE) has announced $40M in funding over five years for a new research center aimed at developing hybrid photoelectrodes for converting sunlight into liquid fuels. Chemists from DOE’s Brookhaven National Laboratory will be key partners in this effort, dubbed the Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), which will be led by the University of North Carolina at Chapel Hill (UNC) and includes additional collaborators at Emory University, North Carolina State University, the University of Pennsylvania, and Yale.

Read more

SLAC and Stanford scientists home in on pairs of atoms that boost a catalyst’s activity

A study identified which pairs of atoms in a catalyst nanoparticle are most active in a reaction that breaks down a harmful exhaust gas in catalytic converters. The results are a step toward engineering cheaper, more efficient catalysts.

Read more

Platinum-free catalysts could make cheaper hydrogen fuel cells

Argonne scientists studied platinum-free catalysts for important fuel cell reactions. The research provides understanding of the mechanisms that make the catalysts effective, and it could inform production of more efficient and cost-effective catalysts.

Read more

Investigating the dynamics of stability

Scientists have gained important insight into the mechanisms that drive stability and activity in materials during oxygen evolution reactions. This insight will guide the practical design of materials for electrochemical fuel production.

Read more

Water is Key in Catalytic Conversion of Methane to Methanol

Scientists reveal new details that explain how a highly selective catalyst converts methane, the main component of natural gas, to methanol, an easy-to-transport liquid fuel and feedstock for making plastics, paints, and other commodity products. The findings could aid the design of even more efficient/selective catalysts to make methane conversion an economically viable and environmentally attractive alternative to venting or flaring “waste” gas.

Read more

Monitoring Intermediates in CO2 Conversion to Formate by Metal Catalyst

The production of formate from CO2 is considered an attractive strategy for the long-term storage of solar renewable energy in chemical form.

Read more

The Beauty of Imperfections: Linking Atomic Defects to 2D Materials’ Electronic Properties

Scientists at Berkeley Lab have revealed how atomic defects emerge in transition metal dichalcogenides, and how those defects shape the 2D material’s electronic properties. Their findings could provide a versatile yet targeted platform for designing 2D materials for quantum information science.

Read more