Finding What Makes Catalysts Tick

Computational chemist Samantha Johnson, who is searching for combinations to bolster energy future, is among the PNNL scientists preparing to move into the Energy Sciences Center. The new $90 million, 140,000-square-foot facility, is under construction on the PNNL campus and will accelerate innovation in energy research using chemistry, materials science, and quantum information sciences to support the nation’s climate and clean energy research agenda.

Novel Catalyst Means Ammonia Synthesis with Less Heat and Pressure

Neutron scattering has unveiled new insights into the performance of a novel metal catalyst used to convert nitrogen into ammonia. The key discovery is that the hydrogen atoms on the surface of the material—not caged inside the catalyst—play the most significant role in the ammonia synthesis. The material catalyzes ammonia synthesis with significantly less energy than the traditional iron-based catalysts.

Argonne innovations and technology to help drive circular economy

In a collaborative effort to “recover, recycle and reuse,” Argonne strengthens research that addresses pollution, greenhouse gases and climate change and aligns with new policies for carbon emission reduction.

Study Reveals Platinum’s Role in Clean Fuel Conversion

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory, Stony Brook University (SBU), and other collaborating institutions have uncovered dynamic, atomic-level details of how an important platinum-based catalyst works in the water gas shift reaction. The experiments provide definitive evidence that only certain platinum atoms play an important role in the chemical conversion, and could therefore guide the design of catalysts that use less of this precious metal.

Study shows tweaking one layer of atoms on a catalyst’s surface can make it work better

When an LNO catalyst with a nickel-rich surface carries out a water-splitting reaction, its surface atoms rearrange from a cubic to a hexagonal pattern and its efficiency doubles. Deliberately engineering the surface to take advantage of this phenomenon offers a way to design better catalysts.

Better together: Scientists discover far-reaching applications of nanoparticles made of multiple elements

As catalysts for fuel cells, batteries and processes for carbon dioxide reduction, alloy nanoparticles that are made up of five or more elements are shown to be more stable and durable than single-element nanoparticles.

A first-of-its-kind catalyst mimics natural processes to break down plastic and produce valuable new products

A team of scientists led by the U.S. Department of Energy’s Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

High-precision electrochemistry: The new gold standard in fuel cell catalyst development

As part of an international collaboration, scientists at Argonne National Laboratory have made a pivotal discovery that could extend the lifetime of fuel cells that power electric vehicles by eliminating the dissolution of platinum catalysts.

New Nitrogen Assembly Carbon catalyst has potential to transform chemical manufacturing

Scientists at the U.S. Department of Energy’s Ames Laboratory have discovered a metal-free carbon-based catalyst that has the potential to be much less expensive and more efficient for many industrial concerns, including manufacturing of bio- and fossil fuels, electrocatalysis, and fuel cells.

A Shining Example of Nature Leading the Way

From oil refining to automobile pollution-control devices to the bulk of pharmaceuticals, platinum-group metals are the go-to choice for facilitating chemical reactions. It’s been that way for decades. But a new review article in the August 14 issue of the journal Science, led by first author Morris Bullock of Pacific Northwest National Laboratory, provides a road map toward greater use of Earth-abundant metals, which would reduce cost and environmental impact.

Brookhaven Lab Partners in New $40 M Research Center to Convert Sunlight to Liquid Fuels

UPTON, NY–The U.S. Department of Energy (DOE) has announced $40M in funding over five years for a new research center aimed at developing hybrid photoelectrodes for converting sunlight into liquid fuels. Chemists from DOE’s Brookhaven National Laboratory will be key partners in this effort, dubbed the Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), which will be led by the University of North Carolina at Chapel Hill (UNC) and includes additional collaborators at Emory University, North Carolina State University, the University of Pennsylvania, and Yale.

Platinum-free catalysts could make cheaper hydrogen fuel cells

Argonne scientists studied platinum-free catalysts for important fuel cell reactions. The research provides understanding of the mechanisms that make the catalysts effective, and it could inform production of more efficient and cost-effective catalysts.

Investigating the dynamics of stability

Scientists have gained important insight into the mechanisms that drive stability and activity in materials during oxygen evolution reactions. This insight will guide the practical design of materials for electrochemical fuel production.

Water is Key in Catalytic Conversion of Methane to Methanol

Scientists reveal new details that explain how a highly selective catalyst converts methane, the main component of natural gas, to methanol, an easy-to-transport liquid fuel and feedstock for making plastics, paints, and other commodity products. The findings could aid the design of even more efficient/selective catalysts to make methane conversion an economically viable and environmentally attractive alternative to venting or flaring “waste” gas.

The Beauty of Imperfections: Linking Atomic Defects to 2D Materials’ Electronic Properties

Scientists at Berkeley Lab have revealed how atomic defects emerge in transition metal dichalcogenides, and how those defects shape the 2D material’s electronic properties. Their findings could provide a versatile yet targeted platform for designing 2D materials for quantum information science.

Machine-Learning Analysis of X-ray Data Picks Out Key Catalytic Properties

Scientists seeking to design new catalysts to convert carbon dioxide (CO2) to methane have used a novel artificial intelligence (AI) approach to identify key catalytic properties. By using this method to track the size, structure, and chemistry of catalytic particles under real reaction conditions, the scientists can identify which properties correspond to the best catalytic performance, and then use that information to guide the design of more efficient catalysts.

Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

Scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have garnered two out of five “Distinguished Scientists Fellow” awards announced today by the DOE’s Office of Science. Theoretical physicist Sally Dawson, a world-leader in calculations aimed at describing the properties of the Higgs boson, and José Rodriguez, a renowned chemist exploring and developing catalysts for energy-related reactions, will each receive $1 million in funding over three years to pursue new research objectives within their respective fields.