Research Fellow Turns to Accelerator Power for Wastewater Cleanup

In honor of Hermann Grunder, the founding director of Jefferson Lab, and his contributions to accelerator science, the lab recently established the Hermann Grunder Postdoctoral Fellowship in Accelerator Science. Now, the first Hermann Grunder fellow, John Vennekate, has started work. He said he hopes to follow in the footsteps of his fellowship’s namesake to continue blazing a new trail for practical applications of superconducting accelerators.

Major upgrade to Fermilab accelerator complex gets green light

The U.S. Department of Energy has formally approved the scope, schedule and cost of the PIP-II project at Fermilab. The PIP-II accelerator will become the heart of Fermilab’s upgraded accelerator complex, delivering more powerful proton beams to the lab’s experiments and enabling deeper probes of the fundamental constituents of the universe.

3 Awards Will Support Accelerator R&D for Medical Treatment, Miniaturization, and Machine Learning

U.S. Department of Energy awards announced in July will advance Lawrence Berkeley National Laboratory (Berkeley Lab) R&D to develop a more effective and compact particle-beam system for cancer treatment, improve particle-beam performance using artificial intelligence, and develop a high-power, rapid-fire laser system for both tabletop and large-scale applications.

Recursion and University of Utah launch region’s largest life science incubator

Altitude Lab announced its first resident companies and opened applications for its breakthrough collaborative facility and program. It’s the first of its kind—a blended incubator/accelerator program focused on developing diverse and inclusive early-stage life science and health care companies in Utah.

Robert Ainsworth awarded $2.5 million to improve particle beams for high-intensity experiments

Fermilab scientist Robert Ainsworth has won a $2.5 million Department of Energy Early Career Research Award to study different ways of ensuring stability in high-intensity proton beams. By studying how certain types of beam instabilities emerge and evolve under different conditions, his team can help sharpen scientists’ methods for correcting them or avoiding them to begin with.

Fermilab achieves 14.5-tesla field for accelerator magnet, setting new world record

Fermilab scientists have broken their own world record for an accelerator magnet. In June, their demonstrator steering dipole magnet achieved a 14.5-tesla field, surpassing the field strength of their 14.1-tesla magnet, which set a record in 2019. This magnet test shows that scientists and engineers can meet the demanding requirements for the future particle collider under discussion in the particle physics community.

Three national laboratories achieve record magnetic field for accelerator focusing magnet

Fermilab, Brookhaven National Laboratory and Lawrence Berkeley National Laboratory have achieved a milestone in magnet technology. Earlier this year, their new magnet reached the highest field strength ever recorded for an accelerator focusing magnet. It will also be the first niobium-tin quadrupole magnet to operate in a particle accelerator — in this case, the future High-Luminosity Large Hadron Collider at CERN.

Meet the Director: Guy Savard

This is a continuing profile series on the directors of the Department of Energy (DOE) Office of Science user facilities. These scientists lead a variety of research institutions that provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nano world, the environment, and the atmosphere.

Fermilab’s newest accelerator delivers first results

IOTA is designed to develop technologies to increase the number of particles in a beam without increasing the beam’s size and thus the size and cost of the accelerator. IOTA researchers are investigating a novel technique called nonlinear integrable optics. The technique was a winner: Scientists observed that these specialized magnets significantly decreased the instability.