New Insights on the Interplay of Electromagnetism and the Weak Nuclear Force

Outside atomic nuclei, neutrons are unstable, disintegrating in about fifteen minutes due to the weak nuclear force to leave behind a proton, an electron, and an antineutrino. New research identified a shift in the strength with which a spinning neutron experiences the weak nuclear force, due to emission and absorption of photons and pions. The finding impacts high precision searches of new, beyond the Standard Model interactions in beta decay.

A Novel Way to Get to the Excited States of Exotic Nuclei

Researchers developed a novel approach that observes dissipative scattering reactions to investigate discrete energy levels in an excited exotic nucleus. These energy levels are the nucleus’ unique fingerprint. The researchers observed unusual excited levels in calcium-38. These levels appear to be due to the simultaneous excitation of several protons and neutrons.

Hitting Nuclei with Light May Create Fluid Primordial Matter

A new analysis supports the idea that photons colliding with heavy ions create a fluid of “strongly interacting” particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak force theory as predicted by the Standard Model of Particle Physics.

Analyzing Matter’s Building Blocks

Nobuo Sato is working to put the know in femto. He’s just been awarded a five-year, multimillion dollar research grant by the Department of Energy to develop a “FemtoAnalyzer” that will help nuclear physicists image the three-dimensional internal structure of protons and neutrons. Now, Sato is among 76 scientists nationwide who have been awarded a grant through the DOE Office of Science’s Early Career Research Program to pursue their research.

Rutgers’ Greg Moore Elected to National Academy of Sciences

Rutgers Professor Gregory W. Moore, a renowned physicist who seeks a unified understanding of the basic forces and fundamental particles in the universe, has been elected to the prestigious National Academy of Sciences. Moore, Board of Governors Professor in the Department of Physics and Astronomy at Rutgers University–New Brunswick, joins 119 other new academy members and 26 international members this year who were recognized for their distinguished and ongoing achievements in original research.