For the first time, nuclear physicists made precision measurements of the short-lived radioactive molecule, radium monofluoride (RaF). The researchers combined ion-trapping and specialized laser systems to measure the fine details of the quantum structure of RaF. This allowed them to study the rotational energy levels of RaF and determine its laser-cooling scheme.
Tag: Nuclei
Not-Quite “Magic” Oxygen-28 Observed for the First Time
According to the traditional model of nuclear shells, oxygen-28 is expected to be a doubly magic nucleus with 20 neutrons and 8 protons. However, an experiment performed at the Rare Isotope Beam Facility in Japan measured the direct decay of oxygen-28 into four neutrons and oxygen-24 and found that it is not a bound nucleus.
Researchers Uncover Mechanisms behind Enigmatic Shapes of Nuclei
White blood cells known as neutrophils feature a nucleus that is structured strikingly different than most nuclei. These unique shapes permit neutrophils to travel all over the body to combat invading pathogens.
New Insights on the Interplay of Electromagnetism and the Weak Nuclear Force
Outside atomic nuclei, neutrons are unstable, disintegrating in about fifteen minutes due to the weak nuclear force to leave behind a proton, an electron, and an antineutrino. New research identified a shift in the strength with which a spinning neutron experiences the weak nuclear force, due to emission and absorption of photons and pions. The finding impacts high precision searches of new, beyond the Standard Model interactions in beta decay.
A Novel Way to Get to the Excited States of Exotic Nuclei
Researchers developed a novel approach that observes dissipative scattering reactions to investigate discrete energy levels in an excited exotic nucleus. These energy levels are the nucleus’ unique fingerprint. The researchers observed unusual excited levels in calcium-38. These levels appear to be due to the simultaneous excitation of several protons and neutrons.
Hitting Nuclei with Light May Create Fluid Primordial Matter
A new analysis supports the idea that photons colliding with heavy ions create a fluid of “strongly interacting” particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.
Solving for nuclear structure in light nuclei
The dense region at the center of an atom is a place where scientists can test their understanding of the fundamental interactions. A recent publication contributes to a body of increasingly accurate, descriptive calculations of nuclear structure and reactions.
Scientists achieve higher precision weak force measurement between protons, neutrons
Through a one-of-a-kind experiment at Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak force theory as predicted by the Standard Model of Particle Physics.
Studying Small to Learn Big
Dien Nguyen (Zee-en Wen) studies some of the smallest units of matter on Earth to learn more about massive objects in space. Now, she’ll be conducting her research as the Nathan Isgur Postdoctoral Fellow in Nuclear Experiment at the Department of Energy’s Thomas Jefferson National Accelerator Facility.
Analyzing Matter’s Building Blocks
Nobuo Sato is working to put the know in femto. He’s just been awarded a five-year, multimillion dollar research grant by the Department of Energy to develop a “FemtoAnalyzer” that will help nuclear physicists image the three-dimensional internal structure of protons and neutrons. Now, Sato is among 76 scientists nationwide who have been awarded a grant through the DOE Office of Science’s Early Career Research Program to pursue their research.
Researchers capture the coordinated dance between electrons and nuclei in a light-excited molecule
Using SLAC’s high-speed “electron camera,” scientists simultaneously captured the movements of electrons and nuclei in a light-excited molecule. This marks the first time this has been done with ultrafast electron diffraction, which scatters a powerful beam of electrons off materials to pick up tiny molecular motions.
Rutgers’ Greg Moore Elected to National Academy of Sciences
Rutgers Professor Gregory W. Moore, a renowned physicist who seeks a unified understanding of the basic forces and fundamental particles in the universe, has been elected to the prestigious National Academy of Sciences. Moore, Board of Governors Professor in the Department of Physics and Astronomy at Rutgers University–New Brunswick, joins 119 other new academy members and 26 international members this year who were recognized for their distinguished and ongoing achievements in original research.