Microfluidics helps MTU engineers watch viral infection in real time

Watching a viral infection happen in real time is like a cross between a zombie horror film, paint drying, and a Bollywood epic on repeat. Over a 10-hour span, chemical engineers from Michigan Tech watched viral infections happen with precision inside a microfluidics device and can measure when the infection cycle gets interrupted by an antiviral compound.

Read more

Researchers 3D print unique micro-scale fluid channels used for medical testing

In a groundbreaking new study, researchers at the University of Minnesota, in collaboration with the U.S. Army Combat Capabilities Development Command Soldier Center, have 3D printed unique fluid channels at the micron scale that could automate production of diagnostics, sensors and assays used for a variety of medical tests and other applications. The team is the first to 3D print these structures on a curved surface, providing the initial step for someday printing them directly on the skin for real-time sensing of bodily fluids.

Read more

Promising New Method for Producing Tiny Liquid Capsules

Microcapsules for the storage and delivery of substances are tiny versions of the type of capsule used for fish oil or other liquid supplements. A new method for synthesizing microcapsules, reported in AIP Advances, creates microcapsules with a liquid core that are ideal for the storage and delivery of oil-based materials in skin care products. They also show promise in some applications as tiny bioreactors. In this new method, a surfactant-free microfluidics process is used.

Read more

Ultrasound-Assisted Molecule Delivery Looks to Preserve Blood for Years

Blood can typically be stored for only six weeks after donation, but a potential solution attempts to dry blood by using a sugar-based preservative. New work in ultrasound technology looks to provide a path to inserting these sugars into human red blood cells, allowing the molecule trehalose to enter the cells and prevent their degradation when dried for preservation. The researchers discuss their work in this week’s Biomicrofluidics.

Read more

Evaluating Embryo Quality with Ultrasensitive Protein Detection

Infertility is estimated to affect 9% of reproductive-aged couples globally, and many couples turn to assisted reproductive technology. Selecting embryos with maximum development potential plays a pivotal role in obtaining the highest rate of success in ART treatment.
Researchers can evaluate the quality of an embryo by detecting the content of proteins secreted. In Biomicrofluidics, a method to detect trace proteins secreted by embryos using microfluidic droplets and multicolor fluorescence holds promise to select embryos for ART.

Read more