UCI-led team awarded $2.3 million by California Initiative to Advance Precision Medicine

Scientists have grown small amounts of self-organizing brain tissue, known as organoids, in a tiny 3D-printed system that allows observation while they grow and develop. The advance uses 3D printing to create a reusable and easily adjustable platform that costs only about $5 per unit to fabricate, and the design includes imaging wells for the growing organoids and microfluidic channels to provide a nutrient medium and preheating that supports tissue growth. The work is reported in Biomicrofluidics.

Microchip Models of Human Lungs Enable Better Understanding of Disease, Immune Response

In Biomicrofluidics, researchers review lung-on-chip technologies that represent the vital properties of lung tissue and are capable of recapitulating the fundamental aspects of various pathologies. The researchers reviewed various lung-on-chips and their applications in examining, diagnosing, and treating human viruses, including the coronavirus that causes COVID-19. The knowledge accumulated paves the way to use these models to study the interaction of several human respiratory viruses with the airway epithelium and alveolus in an organ-relevant setting.

Detecting Small Amounts of Virus in Early Infections

Diagnostic devices that are used at home or in doctors’ offices are often not sensitive enough to detect small amounts of a virus that might be present in samples from asymptomatic patients, which can occur in early stage COVID-19. In Biomicrofluidics, scientists report a membrane-based invention that can concentrate the virus content of a sample of urine or saliva, allowing it to be detected.

Paper-Based Device Provides Low-Power, Long-Term Method for Analyzing Sweat

Researchers at North Carolina State University have constructed a paper-based device as a model of wearables that can collect, transport and analyze sweat in next-generation wearable technology. Using a process known as capillary action, akin to water transport in plants, the device uses evaporation to wick fluid that mimics the features of human sweat to a sensor for up to 10 days or longer. They discuss their work in the journal Biomicrofluidics.

Predicting Cancer Behavior Requires Better Understanding of Tumor Cells

Our ability to predict who will get cancer, how patients will respond to treatment, or if patients will relapse is still quite limited, despite advances in the detection of genetic mutations and the establishment of risk factors; recently researchers were inspired to find new ways of looking at the problem. In Biomicrofluidics, they report that using cellular mechanophenotyping, along with traditional methods such as immunostaining and genetic analysis, may provide a more comprehensive view of a tumor.

How Blood Cells Deform, Recover When Traveling Through Tiny Channels

In this week’s Biomicrofluidics, a method to characterize the shape recovery of healthy human RBCs flowing through a microfluidic constricted channel is reported. This investigation revealed a coupling between the cell’s mechanical properties and the hydrodynamic properties of the flow. In addition, the method could distinguish between healthy red blood cells and those infected by the malaria parasite. This suggests a possible new technique for diagnosing disease.