A Cousin of Table Salt Could Make Energy Storage Faster and Safer

Scientists have found that lithium vanadium oxide can rapidly charge and discharge energy. The material has a structure similar to table salt but with a more random atomic arrangement. It charges and discharges without growing lithium metal “dendrites” that can cause dangerous short circuits. This could lead to safer, faster-charging batteries for electric vehicles.

Internships Put Futures in Flight

PNNL intern Ki Ahn spent this past year as an undergraduate at PNNL gaining hands-on research experience in clean energy storage technologies for vehicles and aviation. Ahn is enrolling in Stanford University this fall to finish his bachelor’s degree. With plans to major in mechanical engineering or computer science, he wants to explore how future aircraft technologies can be designed to reduce harmful environmental effects.

Printing Flexible Wearable Electronics for Smart Device Applications

With the increase in demand for flexible wearable electronics, researchers have explored flexible energy storage devices, such as flexible supercapacitators, that are lightweight and safe and easily integrate with other devices. Printing electronics has proved to be an economical, simple, and scalable strategy for fabricating FSCs. In Applied Physics Reviews, researchers provide a review of printed FSCs in terms of ability to formulate functional inks, design printable electrodes, and integrate functions with other electronic devices.

Saving the climate with solar fuel

Produced in a sustainable way, synthetic fuels contribute to switching mobility to renewable energy and to achieving the climate goals in road traffic. In the mobility demonstrator “move” Empa researchers are investigating the production of synthetic methane from an energy, technical and economic perspective – a project with global potential.

Expert in Carbon Materials Kicks off 239th ECS Meeting with IMCS18 Plenary Session

The ECS Lecture at the Plenary Session of the 239th ECS Meeting with IMCS18 will be delivered by Dr. Rodney Ruoff, Distinguished Professor in the Departments of Chemistry and Materials Science, and the School of Energy Science and Chemical Engineering at the Ulsan National Institute of Science and Technology (UNIST), South Korea, and Director of the Center for Multidimensional Carbon Materials (CMCM). The Plenary Session is from 2100-2200h EST on Monday, May 31, after which the content will be available through June 26, 2021. The 239th ECS Meeting with IMCS18 takes place in a digital format. There is no cost to participate, however pre-registration is required.

Argonne leads creation of definitive valuation guide for pumped storage hydropower

Argonne scientists led four other laboratories in developing definitive guidance on how to value pumped storage hydropower projects. Their efforts resulted in DOE publication of the Pumped Storage Hydropower Valuation Guidebook: A Cost-Benefit and Decision Analysis Valuation Framework. The guide provides an objective, transparent valuation methodology and helps measure both monetary and non-monetary value streams.

Mapping Performance Variations to See How Lithium-Metal Batteries Fail

Scientists have identified the primary cause of failure in a state-of-the-art lithium-metal battery, of interest for long-range electric vehicles: electrolyte depletion.

Story tips: Urban climate impacts, materials’ dual approach and healing power

ORNL identifies a statistical relationship between the growth of cities and the spread of paved surfaces. // ORNL successfully demonstrates a technique to heal dendrites that formed in a solid electrolyte. // ORNL combines additive manufacturing with conventional compression molding.

ORNL receives three 2021 FLC Awards for technology transfer

Three technologies developed by researchers at Oak Ridge National Laboratory have won National Technology Transfer Awards from the Federal Laboratory Consortium. The annual FLC Awards recognize significant accomplishments in transferring federal laboratory technologies to the marketplace.

Chemists Settle Battery Debate, Propel Research Forward

UPTON, NY—A team of researchers led by chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has identified new details of the reaction mechanism that takes place in batteries with lithium metal anodes. The findings, published today in Nature Nanotechnology, are a major step towards developing smaller, lighter, and less expensive batteries for electric vehicles.

New Technique Extends Next-Generation Lithium Metal Batteries

Columbia Engineering researchers have found that alkali metal additives, such as potassium ions, can prevent lithium microstructure proliferation during battery use. They used a combination of microscopy, nuclear magnetic resonance, and computational modeling to discover that adding small amounts of potassium salt to a conventional lithium battery electrolyte produces unique chemistry at the lithium/electrolyte interface, and modulates degradation during battery operation, preventing the growth of microstructures and leading to safer, longer lasting batteries.

Toward an Ultrahigh Energy Density Capacitor

Researchers at Berkeley Lab and UC Berkeley have demonstrated that a common material can be processed into a top-performing energy storage material. Their discovery could improve the efficiency, reliability, and robustness of personal electronics, wearable technologies, and car audio systems.

Safer, longer-lasting energy storage requires focus on interface of advanced materials

More studies at the interface of battery materials, along with increased knowledge of the processes at work, are unleashing a surge of knowledge needed to more quickly address the demand for longer-lasting portable electronics, electric vehicles and stationary energy storage for the electric grid.

Finding Balance Between Green Energy Storage, Harvesting

Generating power through wind or solar energy is dependent on the abundance of the right weather conditions, making finding the optimal strategy for storage crucial to the future of sustainable energy usage. Research published in the Journal of Renewable and Sustainable Energy identifies key indicators that will help achieve balance between green energy storage capacity and harvesting capability and determine the energy potential of a region.

Peering into Functioning Batteries with Sooyeon Hwang

Using electron microscopes, Hwang—a materials scientist at Brookhaven Lab’s Center for Functional Nanomaterials (CFN)—characterizes the structure and chemistry of operating battery electrode materials.

Making a Material World Better, Faster Now: Q&A With Materials Project Director Kristin Persson

Berkeley Lab’s Kristin Persson shares her thoughts on what inspired her to launch the Materials Project online database, the future of materials research and machine learning, and how she found her own way into a STEM career.

Energy storage startup SPARKZ licenses ORNL cobalt-free battery tech

Energy storage startup SPARKZ Inc. has exclusively licensed five battery technologies from the Department of Energy’s Oak Ridge National Laboratory designed to eliminate cobalt metal in lithium-ion batteries. The advancement is aimed at accelerating the production of electric vehicles and energy storage solutions for the power grid.

Tiny Quantum Sensors Watch Materials Transform Under Pressure

Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

Living on the Edge: How a 2D Material Got Its Shape

A team of scientists led by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has gained valuable insight into 3D transition metal oxide nanoparticles’ natural “edge” for 2D growth.

Energy storage expert up for comments on chemistry Nobel Prize, Li-ion batteries

MOSCOW (MIPT) — Following the Wednesday announcement of this year’s Nobel laureates in chemistry, we talked to Dmitry Semenenko, who heads the Energy Storage Lab at MIPT’s Institute of Arctic Technology. He is available to comment on lithium-ion batteries and…