Novel Tag Provides First Detailed Look into Goliath Grouper Behavior

A study is the first to reveal detailed behavior of massive goliath groupers. Until now, no studies have documented their fine-scale behavior. What is known about them has been learned from divers, underwater video footage, and observing them in captivity. Using a multi-sensor tag with a three axis accelerometer, gyroscope and magnetometer as well as a temperature, pressure and light sensor, a video camera and a hydrophone, researchers show how this species navigates through complex artificial reef environments, maintain themselves in high current areas, and how much time they spend in different cracks and crevices – none of which would be possible without the tag.

NAU mechanical engineer receives NSF CAREER award to pioneer robot-assisted rehabilitation while integrating education, research

Zach Lerner leads the Biomechatronics Lab at NAU, where he studies the use of robotics to help improve the gait of people with walking disabilities. The outcomes for this project have the potential to transform treatment of walking disabilities across a wide range of conditions.

Associations between head impact exposure and abnormal imaging findings in youth football players over consecutive seasons

Researchers examined the frequency and severity of head impacts experienced by youth football players and how exposure to head impacts changes from one year to the next in returning players, then compared the resulting data with findings on neuroimaging studies obtained over consecutive years in the same athletes.

Biohybrid Model Uses Organic Lungs, Synthetic Muscles to Re-Create Respiration Mechanics

Discussed in APL Bioengineering, researchers created a high-fidelity respiratory simulator that accurately represents the interplay between the abdomen, diaphragm, lungs and pleural space, the fluid-filled membrane surrounding the thorax and lungs. The model, using swine lungs, soft robotic materials and artificial muscles, allows precise tuning of pressure in each part of the system, so specific disease conditions can be tested. It also proved extremely useful for testing ventilator-only respiration by removing the elastomeric diaphragm.

Why males pack a powerful punch

Elk have antlers. Rams have horns. In the animal kingdom, males develop specialized weapons for competition when winning a fight is critical. Humans do too, according to new research from the University of Utah. Males’ upper bodies are built for more powerful punches than females’, says the study, published in the Journal of Experimental Biology, suggesting that fighting may have long been a part of our evolutionary history.