Observatorio Rubin será crucial para descubrir enanas café que revelarán los secretos de la Vía Láctea

Demasiado grandes para ser planetas, pero demasiado pequeñas para ser estrellas, las enanas café más distantes son un ingrediente clave para entender la historia de la Vía Láctea. Por tal motivo, la Investigación del Espacio-Tiempo como Legado para la posteridad del Observatorio Vera C. Rubin será clave para detectar una población de antiguas enanas café que se espera sea unas 20 veces mayor de lo que se ha visto hasta el momento, con lo que será posible revelar los procesos que dieron forma a nuestra galaxia.

NSF–DOE Rubin Observatory Will Detect Thousands of Elusive Brown Dwarfs, Unlocking Milky Way Mysteries

Too big to be planets but too small to be stars, distant brown dwarfs are a key ingredient for understanding the history of the Milky Way. Vera C. Rubin Observatory’s Legacy Survey of Space and Time will detect a population of ancient brown dwarfs about 20 times bigger than we’ve previously seen, revealing the processes that shaped our home galaxy.

Astronomers find missing link in massive black hole formation

Newly identified fast-moving stars in the star cluster Omega Centauri provide solid evidence for a central black hole in the cluster. With at least 8,200 solar masses, that black hole is the best candidate for a class of black holes astronomers have long believed to exist: intermediate-mass black holes, formed in the early stages of galaxy evolution.

Observatorio Rubin revelará las huellas de la materia oscura en nuestra galaxia

Gracias a las imágenes que podrán ser obtenidas con seis filtros distintos montados en la cámara más grande construida para la astronomía, el Observatorio Vera C. Rubin estará en condiciones de descubrir los efectos de la interacción de la materia oscura con corrientes estelares nunca antes vistos en la Vía Láctea.

Astronomers Unveil Strong Magnetic Fields Spiraling at the Edge of Milky Way’s Central Black Hole

A new image from the Event Horizon Telescope (EHT) collaboration— which includes scientists from the Center for Astrophysics | Harvard & Smithsonian (CfA)— has uncovered strong and organized magnetic fields spiraling from the edge of the supermassive black hole Sagittarius A* (Sgr A*). Seen in polarized light for the first time, this new view of the monster lurking at the heart of the Milky Way Galaxy has revealed a magnetic field structure strikingly similar to that of the black hole at the center of the M87 galaxy, suggesting that strong magnetic fields may be common to all black holes. This similarity also hints toward a hidden jet in Sgr A*.

36 Dwarf Galaxies Had Simultaneous “Baby Boom” of New Stars

Three dozen dwarf galaxies far from each other had a simultaneous “baby boom” of new stars, an unexpected discovery that challenges current theories on how galaxies grow and may enhance our understanding of the universe. Galaxies more than 1 million light-years apart should have completely independent lives in terms of when they give birth to new stars. But galaxies separated by up to 13 million light-years slowed down and then simultaneously accelerated their birth rate of stars, according to a Rutgers-led study published in the Astrophysical Journal.

Rutgers Expert Available to Discuss Supernova Discovery

New Brunswick, N.J. (April 21, 2021) – Rutgers University–New Brunswick astrophysicist John P. (Jack) Hughes is available for interviews on a supernova (exploding star) discovery published today in the journal Nature. The discovery, made with NASA’s Chandra X-ray Observatory, features…

Rutgers Expert Available to Discuss James Webb Space Telescope Science

New Brunswick, N.J. (Feb. 22, 2021) – Rutgers University–New Brunswick Professor Kristen McQuinn is available for interviews on the upcoming launch of the James Webb Space Telescope, its potential scientific impact and the leap forward it will provide in our understanding of the…

Galaxy Simulations Could Help Reveal Origins of Milky Way

Rutgers astronomers have produced the most advanced galaxy simulations of their kind, which could help reveal the origins of the Milky Way and dozens of small neighboring dwarf galaxies. Their research also could aid the decades-old search for dark matter, which fills an estimated 27 percent of the universe. And the computer simulations of “ultra-faint” dwarf galaxies could help shed light on how the first stars formed in the universe.

Study: Dying Stars Breathe Life Into Earth

As dying stars take their final few breaths of life, they gently sprinkle their ashes into the cosmos through the magnificent planetary nebulae. These ashes, spread via stellar winds, are enriched with many different chemical elements, including carbon.

Findings from a study published today in Nature Astronomy show that the final breaths of these dying stars, called white dwarfs, shed light on carbon’s origin in the Milky Way.

Peering under galactic dust, study reveals radiation at center of Milky Way

Thanks to 20 years of homegrown galactic data, astronomers at the University of Wisconsin–Madison, UW–Whitewater and Embry-Riddle Aeronautical University have finally figured out just how much energy permeates the center of the Milky Way.
The researchers say it could one day help astronomers track down where all that energy comes from. Understanding the source of the radiation could help explain not only the nature of the Milky Way, but the countless others that resemble it.