Decorating Windows for Optimal Sound Transmission

Glass windows typically offer some amount of sound proofing, sometimes unintentionally. In general, ventilation is required to achieve large sound transmission. But some applications — like gas explosion studies — require a transparent partition that allows for acoustic propagation without the presence of airflow. In those cases, ventilation is not allowed. In Applied Physics Letters, researchers discuss a layered glass material they developed that allows for efficient sound transmission with no air ventilation.

‘Blinking” Crystals May Convert CO2 into Fuels

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels. A Rutgers-led team has created ultra-small titanium dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

A new form of glass through molecular entanglement

Physicists at the University of Vienna in collaboration with the Max Planck Institute for Polymer Research have discovered a new type of glass formed by long, cyclic molecules. The scientists successfully demonstrated that by making parts of the rings more mobile, the rings become more strongly entangled and the molecular fluid glassifies.

Scientists learn how to make oxygen “perform” for them

Chemists have figured out how to keep “the wave” of one particular isotope of oxygen – among the most abundant elements on the planet and a crucial building block for materials like glass and ceramics – going during nuclear magnetic resonance spectroscopy long enough to learn some things about its structure and function.

Improving Optical Characteristics of Thin Glass

In recent years, glass has become an important part of our day-to-day lives, acting as a physical boundary between humans and digital information and communication. At the AVS 66th International Symposium and Exhibition, Albert Fahey, an associate scientist at Corning Incorporated, will present on the methods scientists use to study the chemical and mechanical properties of glass and other optical surfaces, how they are working to better understand these surfaces and their limits, and what new things are being done to improve user friendliness.