Scientists Spot Rare Neutrino Signal for Big Physics Finding

Scientists at Brookhaven National Laboratory developed a software toolkit that reconstructs and isolates neutrino data in 3D. This software directly enabled the long-awaited findings from the MicroBooNE experiment released today by Fermilab in four complementary analyses. The Wire-Cell team at Brookhaven Lab led one of the four analyses—the most sensitive analysis of the electron-neutrino interaction. Some components of the Wire-Cell toolkit were also used in the other three analyses.

MicroBooNE experiment’s first results show no hint of a sterile neutrino

For more than a decade, scientists have wondered whether a theorized new particle, a fourth kind of neutrino called the sterile neutrino, might exist in our universe. Evidence of this would add a new particle to the physicists’ best theory, the Standard Model of Particle Physics. A new particle would be a radical shift in our understanding of the basic building blocks of the universe. MicroBooNE’s four new experimental results all show the same thing: no sign of the sterile neutrino. Instead, the results align with the Standard Model of Particle Physics. With sterile neutrinos further disfavored as the explanation for anomalies spotted in neutrino data, scientists are investigating other possibilities. Unexplained data point toward promising research areas and lead us to more fundamental truths about how physics works at the smallest level.