Governor Hochul Celebrates the Opening Of New York’s First Cell and Gene Therapy Hub at Roswell Park Comprehensive Cancer Center in Buffalo

Governor Kathy Hochul today celebrated the opening of the Roswell Park GMP Engineering and Cell Manufacturing Facility, New York’s first cell and gene therapy hub, located at Roswell Park Comprehensive Cancer Center in Buffalo. The $98 million facility will create new jobs, help to support the research and development of life-saving cell and gene therapies at Roswell, significantly grow its well-established research capabilities, and establish Roswell as one of the premier cell therapy discovery and development institutions in the nation. The expansion also realizes Governor Hochul’s 2023 State of the State commitment to bolster the state’s leadership in the fast-growing CGT sector through establishment of an Upstate cell and gene therapy hub to catalyze its growth in western NY. The GEM facility meets U.S. FDA Good Manufacturing Practice standards for manufacture of clinical cell therapy products, positioning the Roswell Park team to be a multifaceted resource for patients, care teams

Targeting cancer with precision: neoantigen vaccines show promise

In an elegant fusion of science and medicine, neoantigen cancer vaccines are emerging as a formidable strategy in the battle against cancer. These vaccines, a testament to the power of personalized medicine, target cancer’s unique protein signatures, rallying the immune system for a precise and potent attack.

MD Anderson Research Highlights: EHA 2024 Special Edition

The University of Texas MD Anderson Cancer Center’s Research Highlights showcases the latest breakthroughs in cancer care, research, and prevention. These advances are made possible through seamless collaboration between MD Anderson’s world-leading clinicians and scientists, bringing discoveries from the lab to the clinic and back.

An anti-inflammatory curbs spread of fungi causing serious blood infections

Study finds that mesalamine, a common anti-inflammatory drug, can fight the fungus Candida albicans in the gut, potentially preventing the risk of invasive candidiasis in patients with blood cancers.

New treatment for a rare and aggressive cancer improves survival rates in breakthrough clinical trial

An innovative treatment significantly increases the survival of people with malignant mesothelioma, a rare but rapidly fatal type of cancer with few effective treatment options, according to results from a clinical trial led by Queen Mary University of London.

NUS researchers develop novel approach for predicting resistance against cancer therapy

A team of researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS), led by Assistant Professor Anand Jeyasekharan, has discovered a unique combination of oncogenes that could predict treatment resistance, and hence unfavourable outcomes, of patients with Diffuse large B cell lymphoma (DLBCL), the most common type of blood cancer in Singapore and globally.

Chula Makes Progress in “CAR T-Cell Therapy” Innovation: New Hope for Thai Lymphoma Cancer Patients

Chulalongkorn University, Thailand, and Nagoya University, Japan, in their collaboration to develop an immunotherapy method for curing cancer, reported on the progress of CAR T-cell immunotherapy innovation for treating cancer in leukemia and B-cell lymphoma patients, which can increase survival rates and reduce cancer recurrence.

Study Shows Promising Safety, Patient Outcomes Data for MRI-Guided Adaptive Radiation Therapy to Treat Pancreatic Cancer

Findings from a recent prospective study show promising safety and patient outcomes data for locally advanced and borderline resectable pancreatic cancer treatment using ablative Stereotactic MRI-Guided On-table Adaptive Radiation Therapy, also known as SMART.

Department of Energy Announces $14.8 Million for Particle Accelerators for Science & Society

Today, the U.S. Department of Energy (DOE) announced $14.8 million in funding for advanced research projects in particle accelerator science and technology. Particle accelerators provide unique sources of light and particles that support the research of thousands of scientists worldwide, play a direct role in the production of more than $500 billion of goods annually, and treat more than 5 million cancer patients each year.

Prompt Recognition and Treatment Found Effective for Lung Disease in Patients Who Received New Drug for Advanced Cancer

Lung disease caused by a new drug for cancers—including metastatic or advanced breast cancer—can be effectively treated using approaches that focus on early detection and prompt management, according to a study published in ESMO Open on August 11, 2022.

Plant virus plus immune cell-activating antibody clear colon cancer in mice, prevent recurrence

A new combination therapy to combat cancer could one day consist of a plant virus and an antibody that activates the immune system’s “natural killer” cells, shows a study by researchers at the University of California San Diego. In mouse models of colon cancer, the combination therapy eliminated all tumors and prevented their recurrence, which in turn resulted in 100% survival. The therapy also increased survival in mouse models of melanoma.

Computer Simulations of Proteins Help Unravel Why Chemotherapy Resistance Occurs

Understanding why and how chemotherapy resistance occurs is a major step toward optimizing treatments for cancer. A team of scientists including Markus Seeliger, PhD, of the Renaissance School of Medicine at Stony Brook University, believe they have found a new process through which drug resistance happens.

Existing Cancer Therapy in Narrow Use Shows Significant Activity against Other Cancers

A drug currently used in just 1% of cancers has significant potential against the remaining 99%, according to a new study from UH Seidman Cancer Center and Case Western Reserve University, published in the prestigious journal Nature Cancer. Ivosidenib, or AG-120, is currently used against cancers that have a mutation in the IDH1 gene. However, study results show that Ivosidenib is also effective against unmutated, or “wild-type” IDH1. The protein coded by the IDH1 gene in cancers helps cancer cells survive in a stressful tumor environment, so any inhibitor medication that could weaken this defense mechanism is considered a promising therapy. UH and CWRU scientists discovered that under conditions present in the tumor microenvironment, drugs previously believed to be selective for the mutant enzyme have activity against the normal protein. Specifically, low glucose and magnesium levels enhance drug activity. The team has now tested Ivosidenib in mouse models of pancreatic, colorectal, o

Penn Medicine and Children’s Hospital of Philadelphia Announce Partnership with Costa Rica for CAR T Cell Therapy

Penn Medicine and Children’s Hospital of Philadelphia (CHOP), who together pioneered the research and development of the world’s first personalized cellular therapy for cancer — also known as CAR T cell therapy — have announced plans with Costa Rica’s CCSS, or the Caja Costarricense de Seguro Social (Social Security Program), to facilitate CAR T research in Costa Rica.

Capturing the Chemistry of Light-Activated Cancer Drugs with Ruomei Gao

Ruomei Gao—an associate professor at SUNY College at Old Westbury—has been using facilities at the Center for Functional Nanomaterials at Brookhaven Lab to investigate two primary processes of photosensitization for cancer therapy and prevention.

LUDWIG CANCER RESEARCH STUDY DISCOVERS HOW TO REVIVE POTENT BUT INERT ANTI-CANCER IMMUNE CELLS FOR THERAPY

A Ludwig Cancer Research study has discovered how to revive a powerful but functionally inert subset of anti-cancer immune cells that are often found within tumors for cancer therapy.

Led by Ludwig Lausanne’s Ping-Chih Ho and Li Tang of the École Polytechnique Fédérale de Lausanne, the study describes how an immune factor known as interleukin-10 orchestrates the functional revival of “terminally exhausted” tumor-infiltrating T lymphocytes (TILs), which have so far proved impervious to stimulation by immunotherapies. It also demonstrates that the factor, when applied in combination with cell therapies, can eliminate tumors in mouse models of melanoma and colon cancer. The findings are reported in the current issue of Nature Immunology.

Do You Know the Way to Berkelium, Californium?

Scientists at Berkeley Lab have demonstrated how to image samples of heavy elements as small as a single nanogram. The new approach will help scientists advance new technologies for medical imaging and cancer therapies.

Memorial Cancer Institute Together with FAU Research Partnership Earn ‘Cancer Center of Excellence’ Designation

A research partnership formed just last year by Memorial Healthcare System and Florida Atlantic University is already being recognized for quality care, results, and advances in research, and that’s great news for patients fighting cancer in South Florida. The alliance between Memorial’s Cancer Institute and FAU (MCIFAU) has been recognized by the state’s Department of Health as a “Florida Cancer Center of Excellence.” It becomes just the fifth in the state, out of more than 80 competitors, to earn the designation.

Scientists Recruit New Atomic Heavyweights in Targeted Fight Against Cancer

Researchers from Berkeley Lab and Los Alamos National Laboratory have developed new methods for the large-scale production, purification, and use of the radioisotope cerium-134, which could serve as a PET imaging radiotracer for a highly targeted cancer treatment known as alpha-particle therapy.

Tiny Nanospindles Enhance Use of Ultrasound to Fight Cancer

Ultrasound can be used to treat cancer when used in combination with molecules that sensitize the system to sound waves. These sonosensitizers generate toxic reactive oxygen species that attack and kill tumor cells. In Applied Physics Review, scientists report a new type of sonosensitizer based on a vanadium-doped titanium dioxide that enhances the amount of damage ultrasound inflicts on tumors. Studies in mice showed that tumor growth was markedly suppressed when compared to a control group.

MSK: Cancer Isn’t Sheltering in Place

As the height of the COVID-19 outbreak in New York City and the Tri-State area begins to subside, Memorial Sloan Kettering Cancer Center oncologists are urging patients to schedule cancer screenings and treatments now – as the long-term toll of missed diagnoses and delayed treatments could be devastating for patients and their loved ones across the region and the country.

Cancer treatment with immune checkpoint inhibitors may lead to thyroid dysfunction

Thyroid dysfunction following cancer treatment with new treatments called immune checkpoint inhibitors is more common than previously thought, according to research that was accepted for presentation at ENDO 2020, the Endocrine Society’s annual meeting, and will be published in a special supplemental section of the Journal of the Endocrine Society.

Investigational drugs block bone loss in mice receiving chemotherapy

Studying mice, researchers from Washington University School of Medicine in St. Louis have found a driver of bone loss related to cancer treatment — cellular senescence. This process is independent of hormones related to bone health, such as estrogen. Such bone loss can be stopped by treating the mice with either of two investigational drugs already being evaluated in clinical trials.

Ultrasound Selectively Damages Cancer Cells When Tuned to Correct Frequencies

Doctors have used focused ultrasound to destroy tumors without invasive surgery for some time. However, the therapeutic ultrasound used in clinics today indiscriminately damages cancer and healthy cells alike. Researchers have now developed a low-intensity ultrasound approach that exploits the properties of tumor cells to target them and provide a safer option. Their findings, reported in Applied Physics Letters, are a new step in oncotripsy, the singling out and killing of cancer cells based on their physical properties.

NUS researchers use light emitted from nanoparticles to intricately control biological processes

Researchers from the National University of Singapore have developed a method to give more control to optogenetics, by using specially designed nanoparticles and nanoclusters (dubbed ‘superballs’). These nanoparticles and superballs can emit different colours of light when excited by lasers at different wavelengths. These different colours of light can then be used to trigger specific biological processes.