As part of the Q-NEXT quantum research center, Randall Goldsmith of the University of Wisconsin–Madison studies the interplay of light and matter, harnessing it for quantum information technologies.
Tag: Quantum information science
C2QA Fosters Growth of Quantum Workforce through Educational Programs
To increase awareness of quantum opportunities and help grow the U.S. quantum workforce, the Co-design Center for Quantum Advantage (C2QA) hosts and co-hosts educational programs that introduce students to the foundational principles of QIS and foster the development of skills needed for a successful career in this rapidly expanding field.
The programs held this year, including the QIS & Engineering High School-Level Program, QIS 102: Quantum Computing Summer School, and QIS 303: Quantum Error Mitigation, reached more than 170 participants worldwide, from students who just completed their first year of high school to full-fledged QIS researchers — and enthusiastic learners from every level of expertise in between.
U.S. Department of Energy National Quantum Information Science Research Centers celebrate 4-year milestone, look toward future
For four years, the five U.S. Department of Energy National Quantum Information Science Research Centers have been expanding what’s possible in quantum. Their work is now captured in a new website, nqisrc.org.
‘Spooky Action’ at a Very Short Distance: Scientists Map Out Quantum Entanglement in Protons
Scientists have a new way to use data from high-energy particle smashups to peer inside protons. Their approach uses quantum information science to map out how particle tracks streaming from electron-proton collisions are influenced by quantum entanglement inside the proton.
Three Argonne scientists receive U.S. Department of Energy awards to advance quantum computing
The U.S. Department of Energy announces $65 million to advance quantum computing at more than 20 institutions across the nation. Three Argonne National Laboratory scientists and their teams are among the recipients.
Excitement about new QSA studies propel quantum research into a higher energy orbit
QSA is breaking new ground in particle physics and promoting interdisciplinary teamwork to address critical scientific challenges.
‘Writing’ with atoms could transform materials fabrication for quantum devices
A research team at the Department of Energy’s Oak Ridge National Laboratory created a novel advanced microscopy tool to “write” with atoms, placing those atoms exactly where they are needed to give a material new properties.
Constriction Junction, Do You Function?
Scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have shown that a type of qubit whose architecture is more amenable to mass production can perform comparably to qubits currently dominating the field.
Four Argonne scientists receive 2024 DOE Early Career Research Awards
As winners of the 2024 U.S. Department of Energy’s Early Career Research Program, four scientists from Argonne National Laboratory are each receiving an award of $550,000 a year for five years to help them answer complex questions.
Making the atomic universe visible
At Penn State and as a member of the Q-NEXT quantum research center, Nitin Samarth investigates atom-scale materials that could serve as the foundation for future quantum technologies.
X-ray imagery of vibrating diamond opens avenues for quantum sensing
Supported by the Q-NEXT quantum center, scientists at three research institutions capture the pulsing motion of atoms in diamond, uncovering the relationship between the diamond’s strain and the behavior of the quantum information hosted within.
Second “You Belong in Quantum” Series Highlights Unconventional Career Pathways
The second virtual session on April 30 featured diverse speakers discussing their unique journeys into QIS.
João Barata Awarded CERN Fellowship
João Barata, a physicist in the Nuclear Theory Group at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, has received a fellowship at CERN, the European Organization for Nuclear Research. In October 2024, Barata will begin the three-year-long appointment in CERN’s Department of Theoretical Physics.
New Technique Lets Scientists Create Resistance-Free Electron Channels
Researchers have taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state – an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.
Out of the desert, a quantum powerhouse rises
In January, Sandia National Laboratories and The University of New Mexico created the Quantum New Mexico Institute, a cooperatively run research center headquartered at the university.
Revealed: Quantum Entanglement among Quarks
Collisions of high energy particles produce “jets” of quarks, anti-quarks, or gluons. The quarks can’t be directly detected, but simulations indicate that the jets modify the quantum vacuum and that the produced quarks retain entanglement.
What a “2D” quantum superfluid feels like to the touch
Superfluid feels two-dimensional to touch, with heat flowing along the edges of your finger.
What is quantum squeezing?
Scientists exploit a property of quantum physics to make ultraprecise sensors and measurements.
Bigger and better quantum computers possible with new ion trap, dubbed the Enchilada
Sandia National Laboratories has produced its first lot of a new world-class ion trap, a central component for certain quantum computers.
Quantifying Qudits: New Measurements Provide a Glimpse of the Quantum Future
The qubits that make up quantum computers have a lesser-known cousin called qudits. Qudits can carry more information and are more resistant to the noise that can cause qubits to lose information. However, qudits have historically been difficult for scientists to measure and modify.
Midwest Integrated Center for Computational Materials renewed by U.S. Department of Energy
The U.S. Department of Energy has renewed the Midwest Integrated Center for Computational Materials. Its mission is to apply theoretical methods and software to the understanding, simulation and prediction of material properties at the atomic scale.
Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics
Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.
Quantum Error Correction Moves Beyond Breakeven
Quantum systems decohere due to unwanted interactions with their environment. Correcting for the effects of decoherence is a major challenge for quantum information systems. Previous error correction methods have not kept up with decoherence.
5 ways Argonne entangled with Ant-Man to get people to geek out about quantum science
Whether Ant-Man is shrinking between atoms or communicating through entangled particles, his true superpower is his ability to excite people about quantum science. Argonne assembled experts to spread the word about the real science of the quantum realm.
IBM’s Jason Orcutt moves the world toward an interconnected quantum future
Jason Orcutt of IBM provides an industry perspective on quantum simulation research at the Q-NEXT quantum research center and works to connect quantum information systems around the globe.
Quantum computers are better at guessing, new study demonstrates
Daniel Lidar, the Viterbi Professor of Engineering at USC and Director of the USC Center for Quantum Information Science & Technology, and first author Dr. Bibek Pokharel, a Research Scientist at IBM Quantum, achieved this quantum speedup advantage in the context of a “bitstring guessing game.” They managed strings up to 26 bits long, significantly larger than previously possible, by effectively suppressing errors typically seen at this scale. (A bit is a binary number that is either zero or one).
Understanding the Tantalizing Benefits of Tantalum for Improved Quantum Processors
Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits. The coherence time is a measure of how long a qubit retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in superconducting qubits makes them perform better, but no one has been able to determine why—until now.
New foundry to accelerate quantum information research at Argonne National Laboratory
The Argonne Quantum Foundry, a new scientific facility at Argonne, is meeting a critical need for quantum science by providing a robust supply chain of materials for quantum devices and systems.
Quantum education emerges with unlimited potential at MTSU
The new field of quantum information science has been growing across the U.S. and around the globe, and now it has been developed for students and scholars to study at Middle Tennessee State University.
FSU announces bold investments in quantum science and engineering
Florida State University will dedicate more than $20 million to quantum science and engineering over the next three years, funding that will support hiring at least eight new faculty members, equipment and dedicated space in the university’s Interdisciplinary Research and Commercialization Building, and seed money for a new program focused on this emerging field. FSU President Richard McCullough announced the investments at the first day of the university’s Quantum Science and Engineering Symposium last week.
How Argonne is pushing the boundaries of quantum technology research
With its Department of Energy National Quantum Information Science Research Center (Q-NEXT) and its quantum research team, Argonne is a hub for research that could change the way we process and transmit information.
A new quantum approach to solve electronic structures of complex materials
Researchers at Argonne National Laboratory and the University of Chicago explore the possibility of solving the electronic structures of complex molecules using a quantum computer.
Feng Pan sculpts ultrathin materials for quantum information research
The Stanford University postdoctoral researcher, a collaborator with the Q-NEXT quantum research center led by Argonne, develops high-tech materials to deliver photon packages of quantum information.
An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits
Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.
Experts discuss quantum science at screening of ‘Ant-Man and the Wasp: Quantumania’
Following the screening of the movie, leading experts in quantum science discussed the quantum realm in Marvel’s universe and in ours. Guests were also treated to a hands-on demo of the Quantum Casino, a fun, game-based introduction to quantum physics.
New quantum sensing technique reveals magnetic connections
A research team supported by the Q-NEXT quantum research center demonstrates a new way to use quantum sensors to tease out relationships between microscopic magnetic fields.
Department of Energy Announces $9.1 Million for Research on Quantum Information Science and Nuclear Physics
Today, the U.S. Department of Energy (DOE) announced $9.1 million in funding for 13 projects in Quantum Information Science (QIS) with relevance to nuclear physics. Nuclear physics research seeks to discover, explore, and understand all forms of nuclear matter that can exist in the universe – from the subatomic structure of nucleons, to exploding stars, to the emergence of the quark-gluon plasma seconds after the Big Bang.
Argonne announces 2022 Postdoctoral Performance Awards
Nine postdoctoral appointees were recognized with Postdoctoral Performance Awards.
Brookhaven Postdoc Adrien Florio Explores the Next Phase of the Quantum Revolution
Meet Adrien Florio, a postdoctoral research associate and fellow in Brookhaven Lab’s Nuclear Theory Group that is contributing his unique perspective and experience to the Co-design Center for Quantum Advantage’s theory and applications subthrust.
Q-NEXT quantum center releases roadmap for the development of quantum information technologies
The Q-NEXT quantum research center has released a quantum technology roadmap that outlines the research and scientific discoveries needed for distributing quantum information on a 10- to 15-year timescale.
Quantum repeaters and their role in information technology
What are quantum repeaters, and how do they work? This explainer lays what these devices do, their role in entanglement swapping, and how the Q-NEXT quantum center is advancing the technology.
Media Tip: The quest for an ideal quantum bit
Scientists have developed a qubit platform formed by freezing neon gas into a solid, spraying electrons from a light bulb’s filament onto it, and trapping a single electron there. This system shows great promise as an ideal building block for quantum computers.
Media Tip: Stretching qubit lifetimes with asymmetrical crystal environments
Adaptable and versatile, molecular qubits hold promise for numerous quantum applications. By altering the qubit’s host environment, a team supported by the Q-NEXT quantum center has extended the length of time these qubits can maintain information.
The entanglement advantage
Researchers have demonstrated a way to entangle atoms to create a network of atomic clocks and accelerometers. The method has resulted in greater precision in measuring time and acceleration.
A possible game changer for next generation microelectronics
Researchers have discovered new properties of tiny magnetic whirlpools called skyrmions. Their pivotal discovery could lead to a new generation of microelectronics for memory storage with vastly improved energy efficiency.
How Berkeley Lab’s Advanced Quantum Testbed Paves Breakthroughs For Quantum Computing
Since 2018, Berkeley Lab’s Advanced Quantum Testbed (AQT) has led several scientific breakthroughs in quantum computing across various areas. AQT also operates an open-access experimental testbed designed for deep collaboration with external users from academia, national Laboratories, and industry.
Stability in asymmetry: Scientists extend qubit lifetimes
Adaptable and versatile, molecular qubits hold promise for numerous quantum applications. By altering the qubit’s host environment, a team supported by the Q-NEXT quantum center has extended the length of time these qubits can maintain information.
Spilling the Secrets of Quantum Entanglement
Scientists recently tested the ability of three techniques called entanglement witnesses to accurately identify pairs of entangled magnetic particles. Of the three, quantum Fisher information (QFI) performed best, routinely locating entanglement in complex materials. This work is the most thorough examination of QFI’s capabilities to date and is the first to apply QFI to massive solid materials.
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond
The Chicago Quantum Exchange (CQE), a growing intellectual hub for the research and development of quantum technology, has added several new corporate partners: State Farm, QuEra Computing Inc., PsiQuantum, qBraid, and QuantCAD LLC. In addition, Le Lab Quantique (LLQ), a Paris-based think tank, will join as a nonprofit partner.
JPMorgan Chase is newest partner in Q-NEXT quantum research collaboration
JPMorgan Chase, one of the most established financial institutions in the world and the largest bank in the United States, has become a member of the Q-NEXT quantum research center.