SMU solution may be to low-cost, long-lasting renewable batteries for electric vehicles

Lithium-sulfur batteries have never lived up to their potential as the next generation of renewable batteries for electric vehicles and other devices. But ​SMU mechanical engineer Donghai Wang and his research team have found a way to make these Li-S batteries last longer – with higher energy levels – than existing renewable batteries. The research team has been able to prevent Li-S batteries from producing an unwanted side effect known as polysulfide dissolution that appears over time, shortening their lifespan.

Researchers demystify polymer binders to pave way for better sulfide solid-state electrolyte membranes

Using a polymer to make a strong yet springy thin film, scientists led by the Department of Energy’s Oak Ridge National Laboratory are speeding the arrival of next-generation solid-state batteries. This effort advances the development of electric vehicle power enabled by flexible, durable sheets of solid-state electrolytes.

Novel Redox-Active Metal-Organic Framework as an Anode Material for Li Batteries Operating in Freezing Conditions

The Korea Institute of Energy Research (KIER) has developed a redox-active metal-organic hybrid electrode material (SKIER-5) for Li batteries that remains stable in cold conditions as low as minus 20 degrees Celsius. Featured on the front cover of Journal of Materials Chemistry A, a leading publication in the field of materials science.

Can financial subsidy increase electric vehicle (EV) penetration—evidence from a quasi-natural experiment

Abstract Electric vehicles (EVs) are considered a promising solution for reducing emissions in urban transportation and addressing energy crises. Several countries, including China, have implemented direct financial subsidies to encourage the adoption of EVs. However, there is a lack of…

Enhancing Adoption of Sustainable Product Innovations: Addressing Reduced Performance with Risk-Reducing Product Modifications

Abstract Past studies have shown that the probability of the successful diffusion of sustainable product innovations is strikingly low. A potentially promising marketing strategy to reduce negative consumer perceptions of sustainable product innovations is risk-reducing product modifications (RPMs), which account…

Processes, models and the influencing factors for enhanced boiling heat transfer in porous structures

Abstract Due to the increasing volume of electric vehicles in automotive markets and the limited lifetime of onboard lithium-ion batteries, the large-scale retirement of batteries is imminent. The battery packs retired from electric vehicles still own 70%–80% of the initial capacity, thus having…

Confidence-aware reinforcement learning for energy management of electrified vehicles

Abstract The reliability of data-driven techniques, such as deep reinforcement learning (DRL) frequently diminishes in scenarios beyond their training environments. Despite DRL-based energy management strategies (EMS) having gained great popularity in optimizing the energy economy of electrified vehicles (EVs), their performance degradation in untrained…

Optimal capacity planning for the electrification of personal transport: The interplay between flexible charging and energy system infrastructure

Abstract This study analyses optimal capacity planning of the energy system in the context of large-scale diffusion of electric vehicles (EVs), and explores the potential benefits of flexible EV charging. Here, the open-source model GRIMSEL, which is characterized by high granular representation…

Polyphase wireless power transfer system achieves 270-kilowatt charge, sets another world record for electric light-duty passenger vehicles

Researchers at the Department of Energy’s Oak Ridge National Laboratory have successfully demonstrated the first 270-kW wireless power transfer to a light-duty electric vehicle. The demonstration used a Porsche Taycan and was conducted in collaboration with Volkswagen Group of America using the ORNL-developed polyphase wireless charging system.

Electric Vehicle Batteries Could Get Big Boost With New Polymer Coating

Scientists at Berkeley Lab have developed a polymer coating that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. The advance opens up a new approach to developing EV batteries that are more affordable and yet easy to manufacture.

On the Road to Better Solid-State Batteries

A team from Berkeley Lab and Florida State University has designed a new blueprint for solid-state batteries that are less dependent on specific chemical elements. Their work could advance efficient, affordable solid-state batteries for electric cars.

X-rays Reveal Elusive Chemistry for Better EV Batteries

A team of scientists led by chemists at the U.S. Department of Energy’s Brookhaven National Laboratory and Pacific Northwest National Laboratory has unraveled the complex chemical mechanisms of a battery component that is crucial for boosting energy density: the interphase.

Taking Freight Trucks Electric Would Have Big Economic and Environmental Benefits for India

Diesel-fueled freight trucks play an outsized role in producing India’s total greenhouse gas and air pollution emissions. While the country has promoted policies to transition to electric vehicles for public transportation buses and cars, batteries that can power such large trucks have been too heavy and expensive to make their electrification possible. A new study shows that advances in battery technology and dramatically decreased battery costs in recent years have changed that. With the right policies and incentives, battery electric trucks would be more affordable to operate than diesel, and India could become a world leader in producing electric vehicles.

The Race is On: Nevada is in the Driver’s Seat for Burgeoning Lithium Industry. UNLV economic geologist talks lithium battery supply chain, green energy, and self-sustainability

The ‘Lithium-Ion Battery State’ may not have the same ring to it as ‘Battle-Born’ or ‘Silver State,’ but the reality is that Nevada could soon be a leader in the lithium battery supply chain – potentially giving the U.S. an edge in the arms race for the in-demand metal that’s the key to powering everything from your cell phone to electric vehicles.

Scientists Discover New Approach to Stabilize Cathode Materials

UPTON, NY—A team of researchers led by chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has studied an elusive property in cathode materials, called a valence gradient, to understand its effect on battery performance. The findings, published in Nature Communications, demonstrated that the valence gradient can serve as a new approach for stabilizing the structure of high-nickel-content cathodes against degradation and safety issues.

Electric vehicles no environmental savior, could cause power grid problems

As Ford unveils its electric F150, West Virginia University experts note the shift from gasoline-powered engines is not an environmental panacea in the short term, but instead will mean significant and costly upgrades to the nation’s infrastructure. Citing recent events,…