U.S. Department of Energy Announces $18 Million to Advance Particle Accelerator Technologies and Workforce Training

he U.S. Department of Energy (DOE) today announced $18 million in new funding to advance particle accelerator technology, a critical tool for discovery sciences and optimizing the way we treat medical patients, manufacture electronics and clean energy technologies, and defend the nation against security threats.

New IceCube detection proves 60-year-old theory

Normally, electron antineutrino would zip right through the Earth at the speed of light as if it weren’t even there. But this particle just so happened to smash into an electron deep inside the South Pole’s glacial ice, and was caught by the IceCube Neutrino Observatory. This enabled IceCube to make the first ever detection of a Glashow resonance event, a phenomenon predicted 60 years ago by Nobel laureate physicist Sheldon Glashow.

IceCube detection of high-energy particle proves 60-year-old physics theory

With this detection, scientists provided another confirmation of the Standard Model of particle physics. It also further demonstrated the ability of IceCube, which detects nearly massless particles called neutrinos using thousands of sensors embedded in the Antarctic ice, to do fundamental physics. The result was published March 10 in Nature.

Researchers Overcome the Space between Protons and Neutrons to Study the Heart of Matter

Scientists can now study the strong force with a novel method of accessing the space between protons and neutrons within a nucleus. The first direct probes have tested the validity of leading theories that describe the interactions between protons and neutrons in nuclei. This research confirms that current theoretical models describe the behavior of protons and neutrons quite well.

Remote-Working Team to Tame Electron Beams

A major injector upgrade at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility was well underway early last year when the pandemic hit, throwing scientists and their long-anticipated project for a loop. Literally overnight, they had to leave their desks, control room and colleagues behind and rapidly learn how to work together from the confines of their own homes.

Applying Quantum Computing to a Particle Process

A team of researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) used a quantum computer to successfully simulate an aspect of particle collisions that is typically neglected in high-energy physics experiments, such as those that occur at CERN’s Large Hadron Collider.

Supercomputers Aid Scientists Studying the Smallest Particles in the Universe

Using the nation’s fastest supercomputer, Summit at Oak Ridge National Laboratory, a team of nuclear physicists developed a promising method for measuring quark interactions in hadrons and applied the method to simulations using quarks with close-to-physical masses.

Jefferson Lab Launches Virtual AI Winter School for Physicists

Artificial intelligence is a game-changer in nuclear physics, able to enhance and accelerate fundamental research and analysis by orders of magnitude. DOE’s Jefferson Lab is exploring the expanding synergy between nuclear physics and computer science as it co-hosts together with The Catholic University of America and the University of Maryland a virtual weeklong series of lectures and hands-on exercises Jan. 11-15 for graduate students, postdoctoral researchers and even “absolute beginners.”

Remote Work Suits Jefferson Lab Technical Designer

The COVID-19 pandemic has turned workplaces everywhere upside down, prompting countless brainstorming sessions on how to make work environments safer or whether jobs might be done just as well from home. Jefferson Lab technical designer Mindy Leffel says working from home during the pandemic has been a learning process, but has only motivated her to prove herself.

Machine Learning Improves Particle Accelerator Diagnostics

Operators of Jefferson Lab’s primary particle accelerator are getting a new tool to help them quickly address issues that can prevent it from running smoothly. The machine learning system has passed its first two-week test, correctly identifying glitchy accelerator components and the type of glitches they’re experiencing in near-real-time. An analysis of the results of the first field test of the custom-built machine learning system was recently published in the journal Physical Review Accelerators and Beams.

90 Years of Neutrino Science

Berkeley Lab has a long history of participating in neutrino experiments and discoveries in locations ranging from a site 1.3 miles deep at a nickel mine in Ontario, Canada, to an underground research site near a nuclear power complex northeast of Hong Kong, and a neutrino observatory buried in ice near the South Pole.

Know When to Unfold ’Em: Study Applies Error-Reducing Methods from Particle Physics to Quantum Computing

Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

Q&A: How machine learning helps scientists hunt for particles, wrangle floppy proteins and speed discovery

At the Department of Energy’s SLAC National Accelerator Laboratory, machine learning is opening new avenues to advance the lab’s unique scientific facilities and research.

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak force theory as predicted by the Standard Model of Particle Physics.

New Calculation Refines Comparison of Matter with Antimatter

An international collaboration of theoretical physicists has published a new calculation relevant to the search for an explanation of the predominance of matter over antimatter in our universe. The new calculation gives a more accurate prediction for the likelihood with which kaons decay into a pair of electrically charged pions vs. a pair of neutral pions.

Calculating Hadrons Using Supercomputers

Hadrons are elusive superstars of the subatomic world, making up almost all visible matter, and British theoretical physicist Antoni Woss has worked diligently with colleagues at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility to get to know them better. Now, Woss’ doctoral thesis on spinning hadrons has earned him the 2019 Jefferson Science Associates Thesis Prize.

Natalie Roe Named Berkeley Lab’s Associate Director for Physical Sciences

Natalie Roe, who joined Lawrence Berkeley National Laboratory (Berkeley Lab) as a postdoctoral fellow in 1989 and has served as Physics Division director since 2012, has been named the Lab’s Associate Laboratory Director (ALD) for the Physical Sciences Area. Her appointment was approved by the University of California. The announcement follows an international search.

Another Win for the Standard Model: New Study Defies Decades-Old ‘Discrepancy’ With High-Precision Measurement

A new study dives into a decades-old discrepancy from a Standard Model of particle physics pillar known as “lepton flavor universality,” and provides strong evidence to resolve it.

Precise Measurement of Pions Confirms Understanding of Fundamental Symmetry

Nuclear physicists have announced the most precise measurement yet of the ultra-short lifetime of the neutral pion. The result is an important validation of our understanding of the theory of quantum chromodynamics, which describes the makeup of ordinary matter. The research, carried out at the Department of Energy’s Thomas Jefferson National Accelerator Facility, was recently published in the journal Science.

In International Physics Collaborations, Working Remotely Is Nothing New

Marjorie Shapiro, an experimental particle physicist and faculty senior scientist at Berkeley Lab, has been accustomed to working remotely and observing extreme social distancing from some colleagues for years, given that the scientific experiment she supports is 5,800 miles away.

Four Years of Calculations Lead to New Insights into Muon Anomaly

Two decades ago, an experiment at Brookhaven National Laboratory pinpointed a mysterious mismatch between established particle physics theory and actual lab measurements. A multi-institutional research team (including Brookhaven, Columbia University, and the universities of Connecticut, Nagoya and Regensburg, RIKEN) have used Argonne National Laboratory’s Mira supercomputer to help narrow down the possible explanations for the discrepancy, delivering a newly precise theoretical calculation that refines one piece of this very complex puzzle.

IMSA High School Internship advances DUNE project and showcases unexplored potential of physics

Argonne National Laboratory’s Illinois Mathematics and Science Academy (IMSA) High School Internship Program has this year’s exceptionally bright high school students working on the Deep Underground Neutrino Experiment (DUNE)’s world-changing research.

Berkeley Lab Cosmologists Are Top Contenders in Machine Learning Challenge

In a machine learning challenge dubbed the 2020 Large Hadron Collider Olympics, a team of cosmologists from Berkeley Lab developed a code that best identified a mock signal hidden in simulated particle-collision data.

Meet the Director: Guy Savard

This is a continuing profile series on the directors of the Department of Energy (DOE) Office of Science user facilities. These scientists lead a variety of research institutions that provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nano world, the environment, and the atmosphere.

Particle Physics Turns to Quantum Computing for Solutions to Tomorrow’s Big-Data Problems

Giant-scale physics experiments are increasingly reliant on big data and complex algorithms fed into powerful computers, and managing this multiplying mass of data presents its own unique challenges. To better prepare for this data deluge posed by next-generation upgrades and new experiments, physicists are turning to the fledgling field of quantum computing.

Six Berkeley Lab Scientists Named AAAS Fellows

Six scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have been named Fellows of the American Association for the Advancement of Science (AAAS).