Mapping the Electronic States in an Exotic Superconductor

Scientists mapped the electronic states in an exotic superconductor. The maps point to the composition range necessary for topological superconductivity, a state that could enable more robust quantum computing.

MITRE Appoints Gerald Gilbert a MITRE Fellow

MITRE named Gerald Gilbert, Ph.D., a MITRE Fellow to expand MITRE’s quantum science initiatives. MITRE Fellows are a select group of preeminent scientists in their fields who lead critically important programs. The MITRE Fellows program has a history of deeply impactful work to the nation and world, including the Global Positioning System (GPS) and adaptive signal processing.

Know When to Unfold ’Em: Study Applies Error-Reducing Methods from Particle Physics to Quantum Computing

Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

New discovery helps close the gap towards optically-controlled quantum computation

Scientists have discovered a light-induced switching mechanism in a Dirac semimetal. The mechanism establishes a new way to control the topological material, driven by back-and-forth motion of atoms and electrons, which will enable topological transistor and quantum computation using light waves.