Nanowires Create Elite Warriors to Enhance T Cell Therapy

Georgia Tech bioengineer Ankur Singh and his team have developed a method to enhance adoptive T-cell therapy using nanowires to deliver miRNA to T-cells, preserving their naïve state for more effective disease-fighting. This innovative technique allows the T-cells to remain programmable and robust, offering a potential gamechanger for immunotherapies.

New Technique Lets Scientists Create Resistance-Free Electron Channels

Researchers have taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state – an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.

DNA Origami Enables Fabricating Superconducting Nanowires

In AIP Advances, researchers describe how to exploit DNA origami as a platform to build superconducting nanoarchitectures. The structures they built are addressable with nanometric precision that can be used as a template for 3D architectures that are not possible today via conventional fabrication techniques. Inspired by previous works using the DNA molecule as a template for superconducting nanowires, the group took advantage of a recent bioengineering advance known as DNA origami to fold DNA into arbitrary shapes.

Plant-Based Spray Could be Used in N95 Masks and Energy Devices

Engineers have invented a way to spray extremely thin wires made of a plant-based material that could be used in N95 mask filters, devices that harvest energy for electricity, and potentially the creation of human organs. The method involves spraying methylcellulose, a renewable plastic material derived from plant cellulose, on 3D-printed and other objects ranging from electronics to plants, according to a Rutgers-led study in the journal Materials Horizons.