Mutant Gene-Targeted Immunotherapy Approach Developed

Johns Hopkins Kimmel Cancer Center study co-author Bert Vogelstein, M.D., will present the related talk “Targeting genetic alterations in cancers with immunotherapeutic agents” at 11 a.m., March 1, at the Advances in Genome Biology and Technology (AGBT) conference. More information can be found at: https://www.agbt.org/events/general-meeting/agenda/. NOTE: AGBT provides complimentary press registration to staff and working freelance journalists who wish to cover the meeting. https://www.agbt.org/media/guidelines/

Story Tips from Johns Hopkins Experts on COVID-19

Vaccines take time to work. After getting a COVID-19 vaccine, it takes a while for the immune system to fully respond and provide protection from the virus. For the Moderna and Pfizer COVID-19 vaccines, it takes up to two weeks after the second shot to become appropriately protected.

Behaviors Surrounding Oral Sex May Increase HPV-Related Cancer Risk

A wide breadth of behaviors surrounding oral sex may affect the risk of oral HPV infection and of a virus-associated head and neck cancer that can be spread through this route, a new study led by researchers at the Johns Hopkins Kimmel Cancer Center suggests. These findings add nuance to the connection between oral sex and oropharyngeal cancer — tumors that occur in the mouth and throat — and could help inform research and public health efforts aimed at preventing this disease.

Research News Tip Sheet: Story Ideas from Johns Hopkins Medicine

During the COVID-19 pandemic, Johns Hopkins Medicine Media Relations is focused on disseminating current, accurate and useful information to the public via the media. As part of that effort, we are distributing our “COVID-19 Tip Sheet: Story Ideas from Johns Hopkins” every Tuesday throughout the duration of the outbreak.

Researchers Urge Clinical Trial of Blood Pressure Drug to Prevent Lethal Complication of Covid-19

Researchers in the Ludwig Center at the Johns Hopkins Kimmel Cancer Center report they have identified a drug treatment that could—if given early enough—potentially reduce the risk of death from the most serious complication of Coronavirus disease 2019 (COVID-19), also known as SARS-CoV-2 i

Immunotherapy Before Surgery Could Advance Care of an Aggressive Form of Skin Cancer

In what is believed to be a first-of-its-kind study to evaluate the safety of a type of immunotherapy before surgery in patients with an aggressive form of skin cancer, researchers report that the treatment eliminated pathologic evidence of cancer in nearly half of the study participants undergoing surgery. In patients whose tumors respond, this treatment approach offers the potential to reduce the extent of surgery and may also slow or eliminate tumor relapses that often occur after surgery.

Experiments in Mice And Human Cells Shed Light On Best Way to Deliver Nanoparticle Therapy For Cancer

Researchers in the cancer nanomedicine community debate whether use of tiny structures, called nanoparticles, can best deliver drug therapy to tumors passively — allowing the nanoparticles to diffuse into tumors and become held in place, or actively — adding a targeted anti-cancer molecule to bind to specific cancer cell receptors and, in theory, keep the nanoparticle in the tumor longer. Now, new research on human and mouse tumors in mice by investigators at the Johns Hopkins Kimmel Cancer Center suggests the question is even more complicated.

Combination Drug Therapy For Childhood Brain Tumors Shows Promise In Laboratory Models

In experiments with human cells and mice, researchers at the Johns Hopkins Kimmel Cancer Center report evidence that combining the experimental cancer medication TAK228 (also called sapanisertib) with an existing anti-cancer drug called trametinib may be more effective than either drug alone in decreasing the growth of pediatric low-grade gliomas. These cancers are the most common childhood brain cancer, accounting for up to one-third of all cases. Low grade pediatric gliomas arise in brain cells (glia) that support and nourish neurons, and current standard chemotherapies with decades-old drugs, while generally effective in lengthening life, often carry side effects or are not tolerated. Approximately 50% of children treated with traditional therapy have their tumors regrow, underscoring the need for better, targeted treatments.

Multimodal Genomic Analyses Predict Response to Immunotherapy in Lung Cancer Patients

Researchers at Johns Hopkins Kimmel Cancer Center, the Bloomberg~Kimmel Institute for Cancer Immunotherapy and the Johns Hopkins University School of Medicine have developed an integrated genomic approach that potentially could help physicians predict which patients with nonsmall cell lung cancer will respond to therapy with immune checkpoint inhibitors.

Surgery May Add Months or Years of Survival For Adults With Rare And Deadly Brain Cancers

For adult patients with brainstem high-grade gliomas — one of the rarest and deadliest forms of brain cancer — surgically removing the entire tumor may add many months or potentially years of survival beyond that offered by radiation and chemotherapy, according to results of a medical records study led by researchers at the Johns Hopkins Kimmel Cancer Center.

Nanoparticles Deliver ‘Suicide Gene’ Therapy to Pediatric Brain Tumors Growing in Mice

Johns Hopkins researchers report that a type of biodegradable, lab-engineered nanoparticle they fashioned can successfully deliver a “suicide gene” to pediatric brain tumor cells implanted in the brains of mice. The poly(beta-amino ester) nanoparticles, known as PBAEs, were part of a treatment that also used a drug to kill the cells and prolong the test animals’ survival.

Johns Hopkins Medicine Celebrates Opening of The Johns Hopkins National Proton Center at Sibley Memorial Hospital, in Collaboration With Children’s National

Pediatric and adult cancer patients in the District of Columbia and elsewhere will now have access to one of the most advanced, lifesaving proton technologies offered in the U.S. at the newly opened Johns Hopkins National Proton Center at Sibley Memorial Hospital in collaboration with Children’s National Hospital

Changes in Chromosome Caps May be A Marker for Tumor Aggression in Neurofibromatosis Type 1

Researchers at the Johns Hopkins Kimmel Cancer Center report that their study of tumor samples from people with the rare genetic syndrome neurofibromatosis type 1 (NF1) has uncovered novel molecular clues about which tumors are most likely to be aggressive in those with NF1. According to the researchers, the clues could advance the search for more customized and relevant treatments that spare patients exposure to treatments unlikely to work.