Scientists Gain New Molecular-Level Insights into Breaking Down Plant Material for Biofuels

To produce biofuels from nonedible plants, researchers can use cellulase to break down plant cellulose into glucose, which can be fermented to generate bioethanol. Researchers have now used a specialized optical microscope to visualize single cellulase enzymes interacting with different forms of cellulose. This allowed them to investigate enzyme function in the presence of the product of the reaction and other components of plant biomass.

“Organic Fertilizer from Cassava Waste” An Innovation from Chula to Replace Chemical Fertilizers and Increase the Value of Agricultural Waste

A Chula researcher has been successful in adding value to agricultural waste generated by industrial factories by transforming cassava waste and sewage sludge into organic fertilizer to replace the use of chemical fertilizers. He has also come up with a special formula of microbial inoculum that increases nutrients needed by plants.

Plant-Based Spray Could be Used in N95 Masks and Energy Devices

Engineers have invented a way to spray extremely thin wires made of a plant-based material that could be used in N95 mask filters, devices that harvest energy for electricity, and potentially the creation of human organs. The method involves spraying methylcellulose, a renewable plastic material derived from plant cellulose, on 3D-printed and other objects ranging from electronics to plants, according to a Rutgers-led study in the journal Materials Horizons.

How to Make it Easier to Turn Plant Waste into Biofuels

Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Their approach, featuring an ammonia-salt based solvent that rapidly turns plant fibers into sugars needed to make ethanol, works well at close to room temperature, unlike conventional processes, according to a Rutgers-led study in the journal Green Chemistry.