Measuring computer chips to identify defects during manufacturing is crucial to improve production yield. Scientists from Delft and Utrecht investigated a novel imaging technique using EUV light—a high-energy short-wavelength radiation—to examine the 3D nanoscale structures on the chips. This technique eliminates the need to use any imaging system containing expensive EUV reflective mirrors in the measurement tool. Instead, images are reconstructed computationally from acquired diffraction data, resulting in a significant cost reduction.
Tag: Lithography
A new compact diffractive imager for subwavelength resolution
The researchers propose a new method for achieving subwavelength resolution imaging for phase and amplitude objects. Their technique relies on diffractive encoding and decoding with a solid-immersion layer to recover high-frequency information corresponding to the subwavelength features of an object.
Joining Forces: Fast-as-lightning 3D Microprinting with Two Lasers
Printing objects from plastic precisely, quickly, and inexpensively is the goal of many 3D printing processes. However, speed and high resolution remain a technological challenge. A research team from the Karlsruhe Institute of Technology (KIT), Heidelberg University, and the Queensland University of Technology (QUT) has come a long way toward achieving this goal. It developed a laser printing process that can print micrometer-sized parts in the blink of an eye. The international team published the work in Nature Photonics. (DOI: 10.1038/s41566-022-01081-0)
Pushing the Boundaries of Moore’s Law: How Can Extreme UV Light Produce Tiny Microchips?
Some analysts say that the end of Moore’s Law is near, but Patrick Naulleau, the director of Berkeley Lab’s Center for X-Ray Optics (CXRO), says that it could be decades before the modern chip runs out of room for improvement, thanks to advances in materials and instrumentation enabled by the CXRO.
Nikhil Tiwale: Practicing the Art of Nanofabrication
Applying his passions for science and art, Nikhil Tiwale—a postdoc at Brookhaven Lab’s Center for Functional Nanomaterials—is fabricating new microelectronics components.
New fabrication method brings single-crystal perovskite devices closer to viability
Nanoengineers at UC San Diego developed a new method to fabricate perovskites as single-crystal thin films, which are more efficient for use in solar cells and optical devices than the current state-of-the-art polycrystalline forms of the material.