Engineers discover new process for synthetic material growth, enabling soft robots that grow like plants

An interdisciplinary team of University of Minnesota Twin Cities researchers has developed a new, plant-inspired extrusion process that enables synthetic material growth, and the creation of a soft robot that builds its own solid body from liquid to navigate hard-to-reach places and complicated terrain.

Stretching the capacity of flexible energy storage (video)

Researchers in ACS’ Nano Letters report a flexible supercapacitor with electrodes made of wrinkled titanium carbide — a type of MXene nanomaterial — that maintained its ability to store and release electronic charges after repetitive stretching.

Perspective—A Robotic Actuation System Made of Artificial Cells and Gels

This paper introduces recent research on liposome deformation techniques and 3D hydrogel printing. The photo-responsive molecules and the molecular insertion into lipid bilayers induces liposome deformation. The 3D hydrogel printing enables us to freely fabricate the hydrogel objects. It is…

This ‘squidbot’ jets around and takes pics of coral and fish

Engineers at the University of California San Diego have built a squid-like robot that can swim untethered, propelling itself by generating jets of water. The robot carries its own power source inside its body. It can also carry a sensor, such as a camera, for underwater exploration. The researchers detail their work in a recent issue of Bioinspiration and Biomimetics.

Material scientists learn how to make liquid crystal shape-shift

A new 3D-printing method will make it easier to manufacture and control the shape of soft robots, artificial muscles and wearable devices. By controlling the printing temperature of liquid crystal elastomer, researchers have shown they can control the material’s stiffness and ability to contract.

A Great New Way to Paint 3D-Printed Objects

Rutgers engineers have created a highly effective way to paint complex 3D-printed objects, such as lightweight frames for aircraft and biomedical stents, that could save manufacturers time and money and provide new opportunities to create “smart skins” for printed parts. The findings are published in the journal ACS Applied Materials & Interfaces.