Binghamton University collaborates with industry, academic partners on new $285M Manufacturing USA Institute

Binghamton University is a key partner in a new federally funded institute focused on the use of digital twins to improve domestic semiconductor design and manufacturing.

The U.S. Department of Commerce and the Semiconductor Research Corporation Manufacturing Consortium Corp. (SRC) announced last week that they are negotiating for the department to provide SRC $285 million to establish and operate a Manufacturing USA Institute. With combined funding totaling $1 billion, this investment will support the launch of the first-of-its-kind CHIPS Manufacturing USA Institute.

Measuring the computer chips to identify defects using computational imaging and EUV (extreme ultra-violet) light.

Measuring computer chips to identify defects during manufacturing is crucial to improve production yield. Scientists from Delft and Utrecht investigated a novel imaging technique using EUV light—a high-energy short-wavelength radiation—to examine the 3D nanoscale structures on the chips. This technique eliminates the need to use any imaging system containing expensive EUV reflective mirrors in the measurement tool. Instead, images are reconstructed computationally from acquired diffraction data, resulting in a significant cost reduction.

Accelerating Sustainable Semiconductors With ‘Multielement Ink’

Scientists have demonstrated “multielement ink” – the first “high-entropy” semiconductor that can be processed at low-temperature or room temperature. The new material could enable cost-effective and energy-efficient semiconductor manufacturing.

New Ultrathin Capacitor Could Enable Energy-Efficient Microchips

Scientists at Berkeley Lab and UC Berkeley have developed a thin film from a century-old material for next-gen memory and logic devices. The breakthrough advances the pursuit of low-voltage electronics that require less energy to operate than today’s silicon-based electronics.

Pushing the Boundaries of Moore’s Law: How Can Extreme UV Light Produce Tiny Microchips?

Some analysts say that the end of Moore’s Law is near, but Patrick Naulleau, the director of Berkeley Lab’s Center for X-Ray Optics (CXRO), says that it could be decades before the modern chip runs out of room for improvement, thanks to advances in materials and instrumentation enabled by the CXRO.

Next-Gen Semiconductor Manufacturing Tech Wins DOE National Pitch Competition

A process for making hybrid organic-inorganic materials (photoresists) sensitive to extreme-ultraviolet (EUV) light is one of two technologies that won the 2021 National Labs Accelerator Pitch Event. This technology—developed at the Center for Functional Nanomaterials (CFN), a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—could be used for next-generation semiconductor manufacturing by EUV lithography.

Renowned scientist to head new research for plasma applications in industry and quantum information science

The Princeton Plasma Physics Laboratory has appointed David Graves, an internationally known chemical engineer, to head a new research enterprise that will explore plasma applications in semiconductor manufacturing and the next generation of super-fast quantum computers.