New progress in wearable blood pressure monitoring enabled by flexible electronics and machine learning

Wearable cuffless blood pressure monitoring is expected to overcome the discomfort caused to patients by commonly used cuff sphygmomanometers in clinical settings. Flexible electronics and machine learning provide new impetus for the development of wearable cuffless blood pressure monitoring, bringing continuous and comfortable blood pressure monitoring to patients.

Enhancing stretchable electronics: NUS researchers develop novel liquid metal circuits for flexible, self-healing wearables

Imagine a stretchable and durable sensor patch for monitoring the rehabilitation of patients with elbow or knee injuries, or an unbreakable and reliable wearable device that measures a runner’s cardiac activities during training to prevent life-threatening injuries.

Simple ballpoint pen can write custom LEDs

Researchers working with Chuan Wang, an associate professor of electrical and systems engineering at the McKelvey School of Engineering at Washington University in St. Louis, have developed ink pens that allow individuals to handwrite flexible, stretchable optoelectronic devices on everyday materials including paper, textiles, rubber, plastics and 3D objects.

Print, Recycle, Repeat: Scientists Demonstrate a Biodegradable Printed Circuit

Scientists have developed a fully recyclable and biodegradable printed circuit. The advance could divert wearable devices and other flexible electronics from landfill, and mitigate the health and environmental hazards posed by heavy metal waste.

Printing Flexible Wearable Electronics for Smart Device Applications

With the increase in demand for flexible wearable electronics, researchers have explored flexible energy storage devices, such as flexible supercapacitators, that are lightweight and safe and easily integrate with other devices. Printing electronics has proved to be an economical, simple, and scalable strategy for fabricating FSCs. In Applied Physics Reviews, researchers provide a review of printed FSCs in terms of ability to formulate functional inks, design printable electrodes, and integrate functions with other electronic devices.