Taming big data and particle beams: how SLAC researchers are pushing AI to the edge

Check out the first of a two-part series exploring how artificial intelligence helps researchers from around the world perform cutting-edge science with the lab’s state-of-the-art facilities and instruments. In this part you’ll learn how SLAC researchers collaborate to develop AI tools to make molecular movies, speeding up the discovery process in the era of big data.

AI learns physics to optimize particle accelerator performance

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory have demonstrated that they can use machine learning to optimize the performance of particle accelerators by teaching the algorithms the basic physics principles behind accelerator operations – no prior data needed.

Main Attraction: Scientists Create World’s Thinnest Magnet

Scientists at Berkeley Lab and UC Berkeley have created an ultrathin magnet that operates at room temperature. The ultrathin magnet could lead to new applications in computing and electronics – such as spintronic memory devices – and new tools for the study of quantum physics.

Scientists glimpse signs of a puzzling state of matter in a superconductor

High-temperature superconductors conduct electricity with no loss, but no one knows how they do it. SLAC scientists observed the signature of an exotic state of matter called “pair density waves” in a cuprate superconductor and confirmed that it intertwines with another exotic state.

April Snapshots

Science Snapshots from Berkeley Lab: X-rays accelerate battery R&D; infrared microscopy goes off grid; substrates support 2D tech

Decorating Semiconductors at the Atomic Scale

Combining two different semiconductors can create new properties. The way these combinations work depends on how the semiconductors are arranged and contact one another. Researchers have developed a new way to grow semiconductor crystals about 100,000 times smaller than the width of a human hair. This new synthesis method independently controls the arrangements and sizes of the crystals.