Printing objects from plastic precisely, quickly, and inexpensively is the goal of many 3D printing processes. However, speed and high resolution remain a technological challenge. A research team from the Karlsruhe Institute of Technology (KIT), Heidelberg University, and the Queensland University of Technology (QUT) has come a long way toward achieving this goal. It developed a laser printing process that can print micrometer-sized parts in the blink of an eye. The international team published the work in Nature Photonics. (DOI: 10.1038/s41566-022-01081-0)
Tag: Photonic
Controlled by Light Alone, New Smart Materials Twist, Bend and Move
Engineers created light-activated materials that execute precise movements and form complex shapes without the need for wires, motors or other energy sources. The research could lead to smart light-driven systems such as high-efficiency solar cells that automatically follow the sun’s direction.
EMBARGOED: Combining electronic and photonic chips enables new record in super-fast quantum light detection
Researchers from the University of Bristol’s Quantum Engineering Technology Labs (QET Labs) and Université Côte d‘Azur have made a new miniaturized light detector to measure quantum features of light in more detail than ever before. The device, made from two silicon chips working together, was used to measure the unique properties of “squeezed” quantum light at record high speeds.
Photon-Based Processing Units Enable More Complex Machine Learning
Machine learning performed by neural networks is a popular approach to developing artificial intelligence, as researchers aim to replicate brain functionalities for a variety of applications. A paper in the journal Applied Physics Reviews proposes a new approach to perform computations required by a neural network, using light instead of electricity. In this approach, a photonic tensor core performs multiplications of matrices in parallel, improving speed and efficiency of current deep learning paradigms.