First fossil nursery of the great white shark discovered

An international research team led by Jaime A. Villafaña from the Institute of Palaeontology at the University of Vienna discovered the first fossil nursery area of the great white shark, Carcharodon carcharias in Chile. This discovery provides a better understanding of the evolutionary success of the largest top predator in today’s oceans in the past and could contribute to the protection of these endangered animals. The study is published in the journal Scientific Reports.

Nature Unveiling Herself Before Science

21st century societal challenges such as demographic developments and an ageing population demand for new functional materials, such as for bone prostheses. Nature often serves as inspiration when designing these materials. In a recent study published in Analytical Chemistry, a team led by ERC awardee Dennis Kurzbach of the Faculty of Chemistry at the University of Vienna reports an innovative approach for high-resolution real-time monitoring of calcium phosphate mineralisation, which is an important natural process for the formation of, e.g., bone, carapace and teeth. They showed how next generation NMR technology allows to create new knowledge about the efficiency of natural materials.

Atomic fingerprint identifies emission sources of uranium

Uranium is not always the same: depending on whether this chemical element is released by the civil nuclear industry or as fallout from nuclear weapon tests, the ratio of the two anthropogenic, i.e. man-made, uranium isotopes 233U and 236U varies. These results were lately found by an international team grouped around physicists from the University of Vienna and provides a promising new “fingerprint” for the identification of radioactive emission sources.

Each Mediterranean island has its own genetic pattern

A Team around Anthropologist Ron Pinhasi from the University of Vienna – together with researchers from the University of Florence and Harvard University – found out that prehistoric migration from Africa, Asia and Europe to the Mediterranean islands took place long before the era of the Mediterranean seafaring civilizations.

Dancing Matter: New form of movement of cyclic macromolecules discovered

Physicists show unique polymer behavior using computer simulationsEmploying a computer simulation, physicists Maximilian Liebetreu and Christos Likos have shown a unique dynamic behavior of cyclic polymers. Their motion can be distinguished into phases, and the scientists were able to observe the so-called “inflation phase” for the first time.

A Quantum of Solid

Researchers in Austria use lasers to levitate and cool a glass nanoparticle into the quantum regime. Although it is trapped in a room temperature environment, the particle’s motion is solely governed by the laws of quantum physics. The team of scientists from the University of Vienna, the Austrian Academy of Sciences and the Massachusetts Institute of Technology (MIT) published their new study in the journal Science.

A new form of glass through molecular entanglement

Physicists at the University of Vienna in collaboration with the Max Planck Institute for Polymer Research have discovered a new type of glass formed by long, cyclic molecules. The scientists successfully demonstrated that by making parts of the rings more mobile, the rings become more strongly entangled and the molecular fluid glassifies.

Applying biodiversity conservation research in practice

One million species are threatened with extinction, many of them already in the coming decades. This unprecedented loss of biodiversity threatens valuable ecosystems and human well-being. But what is holding us back from putting conservation research into practice? The journal Biological Conservation has published a collection of 14 articles on this topic.

Ancient Rome: a 12,000-year history of genetic flux, migrations and diversity

Scholars have been all over Rome for hundreds of years, but it still holds some secrets – for instance, relatively little is known about where the city’s denizens actually came from. Now, an international team led by Researchers from the University of Vienna, Stanford University and Sapienza University of Rome, is filling in the gaps with a genetic history that shows just how much the Eternal City’s populace mirrored its sometimes tumultuous history.

Many cooks don’t spoil the broth: Manifold symbionts prepare their host for any eventuality

Deep-sea mussels, which rely on cooperative symbiotic bacteria for their food, harbor a surprisingly high diversity of these bacterial “cooks”: Up to 16 different bacterial strains live together in the mussel’s gills, each with its own abilities and strengths. Thanks to this diversity of symbiotic bacterial partners, the mussel is prepared for all eventualities. The mussel bundles up an all-round carefree package, a German-Austrian research team including Jillian Petersen from the University of Vienna and Rebecca Ansorge and Nicole Dubilier from the Max-Planck-Institute for Marine Microbiology now reports in Nature Microbiology.

Placenta transit of an environmental estrogen

The human foetus is considered to be particularly sensitive to environmental contaminants. A team led by Benedikt Warth from the Faculty of Chemistry at the University of Vienna and Tina Bürki from the Swiss Materials Science and Technology Institute, Empa, has now been able to demonstrate for the first time how the widespread food estrogen zearalenone behaves in the womb.

Fossil fish gives new insights into the evolution

An international research team led by Giuseppe Marramà from the Institute of Paleontology of the University of Vienna discovered a new and well-preserved fossil stingray with an exceptional anatomy, which greatly differs from living species. The find provides new insights into the evolution of these animals and sheds light on the recovery of marine ecosystems after the mass extinction occurred 66 million years ago.

2000 atoms in two places at once

The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna in collaboration with the University of Basel. Hot, complex molecules composed of nearly two thousand atoms were brought into a quantum superposition and made to interfere. By confirming this phenomenon – “the heart of quantum mechanics”, in Richard Feynman’s words – on a new mass scale, improved constraints on alternative theories to quantum mechanics have been placed. The work will be published in Nature Physics.