Decoding atractylodes lancea: a genomic journey through adaptation and metabolism

Scientists have decoded the genetic blueprint of Atractylodes lancea, a prized herb in traditional Chinese medicine. Through comprehensive genome resequencing, the study unveils how natural variations drive the plant’s evolution and metabolic adaptations, particularly affecting the production of key medicinal compounds.

Against the odds: the genetic secrets of a rare conifer’s climate change defiance

In a remarkable twist of evolutionary adaptation, the rare Tibetan cypress, Cupressus gigantea, has shown unexpected genetic resilience. Despite facing the brink of extinction due to climate change and habitat loss, the species has experienced a significant reduction in harmful genetic mutations.

Peeling back the genetic layers of stone fruit domestication

Unraveling the genetic underpinnings of stone fruits, a pivotal study explores the genomic landscape of apricot, peach, plum, and mei. It uncovers the signatures of selection pressures driving their domestication and adaptation, revealing a rich tapestry of genetic diversity and evolutionary convergence that shapes the traits we value in these crops.

Major primate genome sequencing studies reveal new insight into evolution, biodiversity and key applications for human health

A new investigation led by researchers at Baylor College of Medicine’s Human Genome Sequencing Center, the Institute of Evolutionary Biology and Pompeu Fabra University in Barcelona, Spain, and Illumina, Inc. analyzed the genomes of 233 nonhuman primate species and revealed key features of primate evolution, human disease and biodiversity conservation.

Second gene implicated in malaria parasite resistance evolution to chloroquine

How malaria parasites evolved to evade a major antimalarial drug has long been thought to involve only one key gene. Now, thanks to a combination of field and lab studies, an international research team has shown a second key gene is also involved in malaria’s resistance to the drug chloroquine.

Blind dating in bacteria evolution

Proteins are the key players for virtually all molecular processes within the cell. To fulfil their diverse functions, they have to interact with other proteins. Such protein-protein interactions are mediated by highly complementary surfaces, which typically involve many amino acids that are positioned precisely to produce a tight, specific fit between two proteins. However, comparatively little is known about how such interactions are created during evolution.

Evolving to outpace climate change, tiny marine animal provides new evidence of long-theorized genetic mechanism

Some copepods, diminutive crustaceans with an outsized place in the aquatic food web, can evolve fast enough to survive in the face of rapid climate change, according to new research that addresses a longstanding question in the field of genetics. Barely more than a millimeter long, the copepod Eurytemora affinis paddles its way through the coastal waters of oceans and estuaries around the world in large numbers — mostly getting eaten by juvenile fish, like salmon, herring and anchovy.