Laser-Sharp Look at Spinning Electrons Sets the Stage for New Physics Discoveries

Spin is an intrinsic property of the electron. When electrons spin in the same direction at a given time, the quantity is called polarization. Understanding polarization helps examine the structure of nuclei of heavy elements. Now, nuclear physicists have measured the polarization of an electron beam more precisely than ever before.

What Makes High Temperature Superconductivity Possible? Researchers Get Closer to a Unified Theory

In cuprate materials, superconductivity competes with magnetic spin and electric charge density wave (CDW) order in the material’s electrons. In some of these materials, strong magnetic interaction causes spin density waves (SDW) and CDWs to lock together to form a stable long-range “stripe state” where the peaks and valleys of the two waves are aligned.

Oxide Interfaces Put New Twist on Electron Spins

Electrons in magnetic solids feel each other as an effective magnetic field that forces the electrons’ spins to align. If the arrangement of atoms is not fully symmetric, an additional magnetic force known as Dzyaloshinskii-Moriya Interaction (DMI) can emerge, forcing the spins to reorient and form whirling patterns called skyrmions. Researchers joined two different materials to enable skyrmion generation.

The Spintronics Technology Revolution Could Be Just a Hopfion Away

A research team co-led by Berkeley Lab has created and observed quasiparticles called 3D hopfions at the nanoscale (billionths of a meter) in a magnetic system. The discovery could advance high-density, high-speed, low-power, yet ultrastable magnetic memory “spintronics” devices.

Magnetism Meets Topology on a Superconductor’s Surface

Scientists have found an energy band gap—an energy range where no electrons are allowed—opens at a point where two allowed energy bands intersect on the surface of an iron-based superconductor. This unusual electronic energy structure could be used for quantum information science and electronics.