Novel Redox-Active Metal-Organic Framework as an Anode Material for Li Batteries Operating in Freezing Conditions

The Korea Institute of Energy Research (KIER) has developed a redox-active metal-organic hybrid electrode material (SKIER-5) for Li batteries that remains stable in cold conditions as low as minus 20 degrees Celsius. Featured on the front cover of Journal of Materials Chemistry A, a leading publication in the field of materials science.

New Technique Extends Next-Generation Lithium Metal Batteries

Columbia Engineering researchers have found that alkali metal additives, such as potassium ions, can prevent lithium microstructure proliferation during battery use. They used a combination of microscopy, nuclear magnetic resonance, and computational modeling to discover that adding small amounts of potassium salt to a conventional lithium battery electrolyte produces unique chemistry at the lithium/electrolyte interface, and modulates degradation during battery operation, preventing the growth of microstructures and leading to safer, longer lasting batteries.