POSTECH team develops deep-learning powered label-free photoacoustic histology for virtual staining, segmentation, and classification of human liver cancers.
Tag: Optics And Photonics
High-performance Visible-light Lasers that Fit on a Fingertip
Researchers at Columbia Engineering’s Lipson Nanophotonics Group have created visible lasers of very pure colors from near-ultraviolet to near-infrared that fit on a fingertip. The colors of the lasers can be precisely tuned and extremely fast – up to 267 petahertz per second, which is critical for applications such as quantum optics. The team is the first to demonstrate chip-scale narrow-linewidth and tunable lasers for colors of light below red — green, cyan, blue, and violet.
Tapping hidden visual information: An all-in-one detector for thousands of colours
A new chip from Aalto University researchers puts photonic information at our fingertips.
Molecules in collective ecstasy
When fluorescent dye molecules nestle perfectly together, something completely new is created: an excited state distributed over many molecules. Such collective excitations can be used in a variety of ways – for organic solar panels, in sensors, for ultrafast data transmission or in microscopy, for example. Empa researchers, together with colleagues from ETH Zurich, EPFL, the Paul Scherrer Institute (PSI) and IBM Research Zurich, have succeeded in making such chemical light amplifiers ten times more efficient than before.
Flexible, easy-to-scale nanoribbons move graphene toward use in tech applications
In a study published April 16 in ACS Photonics, University of Wisconsin–Madison researchers fabricated graphene into the smallest ribbon structures to date using a method that makes scaling-up simple. In tests with these tiny ribbons, the scientists discovered they were closing in on the properties they needed to move graphene toward usefulness in telecommunications equipment.
ORNL neutrons add advanced polarization capability for measuring magnetic materials
Neutron scattering instruments at ORNL’s HFIR and SNS are undergoing upgrades which will enable them to study magnetic phenomena previously not possible in the US. Incorporating a device for spherical neutron polarimetry enables the ability to characterize complex magnetic systems in new dimensions for materials that could be developed for enhanced data storage and quantum computing technologies.