Scientists Tame Quantum Bits in a Widely Used Semiconductor Material

Building large-scale quantum computers will require the ability to create and control qubits made of industrially relevant materials. Researchers have used atomic-level simulations to understand how the vacancies in silicon carbide that translate into spin-based qubits form and behave. This is an important step toward the future of quantum computing as well as quantum sensing.

At the Edge of Graphene-Based Electronics

Researchers at the Georgia Institute of Technology have developed a new graphene-based nanoelectronics platform that could be the key to finding a successor to silicon. The team may have also discovered a new quasiparticle. Their discovery could lead to manufacturing smaller, faster, more efficient, and more sustainable computer chips, and has potential implications for quantum and high-performance computing.