High-temperature superconductor magnets have the potential to lower the costs of operating particle accelerators and enable powerful new technologies like fusion reactors. But quenches – the sudden, destructive events wherein a part of the material loses superconductivity – are a major barrier to their deployment.
Tag: fusion reactor
Story Tips from the Department of Energy’s Oak Ridge National Laboratory, December 2019
An additively manufactured polymer layer applied to specialized plastic proved effective to protect aircraft from lightning strikes in lab test; injecting shattered argon pellets into a super-hot plasma, when needed, could protect a fusion reactor’s interior wall from runaway electrons; ORNL will celebrate the life and legacy of Dr. Liane Russell on December 20.
Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.