Experimental Model of Ovarian Cancer Shows Effect of Healthy Cell Arrangement in Metastasis

A key element to slowing metastasis in ovarian cancer is understanding the mechanisms of how tumor cells invade tissues. In APL Bioengineering, biophysics researchers explain how microscopic defects in how healthy cells line up can alter how easily ovarian cancer cells invade tissue. Using an experimental model, the group found that disruptions in the normal cellular layout, called topological defects, affect the rate of tumor cell invasion.

Combining Best of Both Worlds for Cancer Modeling

Treatment options for many types of cancers remain limited, due partly to the in vitro tools used to model cancers and that results from animal studies do not always translate well to human disease. These shortcomings point to a clear need for a better, patient-specific model. Researchers suggest bioengineered microscale organotypic models can address this need. They discuss the advantages and capabilities of this technique, as well as its challenges, in the journal APL Bioengineering.