When an LNO catalyst with a nickel-rich surface carries out a water-splitting reaction, its surface atoms rearrange from a cubic to a hexagonal pattern and its efficiency doubles. Deliberately engineering the surface to take advantage of this phenomenon offers a way to design better catalysts.
Tag: SUNCAT Center for Interface Science and Catalysis
SLAC and Stanford scientists home in on pairs of atoms that boost a catalyst’s activity
A study identified which pairs of atoms in a catalyst nanoparticle are most active in a reaction that breaks down a harmful exhaust gas in catalytic converters. The results are a step toward engineering cheaper, more efficient catalysts.