Nucleons in Heavy Ion Collisions Are Half as Big as Previously Expected

To understand quark-gluon plasma, theorists compare a sophisticated model to a large amount of experimental data. One of the parameters in this model is the size of the nucleons inside the two colliding lead nuclei. Low-energy experiments find a nucleon size of around 0.5 femtometers, while heavy ion experimental data have found a much larger nucleon size, of about 1 femtometers. A new analysis of heavy ion experimental data includes the experimentally measured reaction rate of lead-lead collisions to arrive at a nucleon size of 0.6 femtometers.

Berkeley Lab Scientists Develop a Cool New Method of Refrigeration

Researchers at Berkeley Lab have developed a new kind of heating and cooling method that they have named the ionocaloric refrigeration cycle. They hope the technique will someday help phase out refrigerants that contribute to global warming and provide safe, efficient cooling and heating for homes.