Their research introduced a revolutionary method, FragDPI, for the prediction of drug-protein binding affinity. This approach represents the initial endeavor to incorporate fragment coding and merge the sequence information of both drugs and proteins, hence preserving the primary features related to DPI interactions. Furthermore, this method employs transfer learning from significant DPI datasets to provide prospective DPI components.
Experimental results demonstrate that the FragDPI model yields commendable outcomes compared to the baselines, including deep neural networks. Intriguingly, the model accurately identified the specific interaction parts of the DTI pairs, thereby aiding in discovering new potential DTI pairs. FragDPI presents a novel approach for mining interacting fragments from DPI mechanism, thereby providing a fresh perspective towards drug discovery.