As Europe experienced its enormous second wave of the COVID-19 disease, researchers noticed the mortality rate was much lower than during the first wave. This inspired some to study and quantify the mortality rate on a country-by-country basis to determine how much the rate decreased. In Chaos, they introduce methods to study the progression of COVID-19 cases to deaths during the pandemic’s different waves; their methods involve applied mathematics, specifically nonlinear dynamics, and time series analysis.
Tag: nonlinear dynamics
‘Chaotic’ Way to Create Insectlike Gaits for Robots
Researchers in Japan and Italy are embracing chaos and nonlinear physics to create insectlike gaits for tiny robots — complete with a locomotion controller to provide a brain-machine interface. Biology and physics are permeated by universal phenomena fundamentally grounded in nonlinear physics, and it inspired the researchers’ work. In the journal Chaos, the group describes using a system of three nonlinear differential equations as a building block for central pattern generators to control the gait of a robotic insect.