However, the biological mechanisms coordinating these responses have remained a mystery for decades—until now. In a study published June 11 in Nature Immunology, Shlomchik and Rebecca Elsner, first author and research assistant professor in Shlomchik’s lab, share their discovery that a cytokine called interleukin-12 (IL-12) acts like a switch to direct which antibody response B cells will generate.
Both B-cell responses are biologically important because each has a different goal. The “emergency response” (extrafollicular response) is the body’s immediate reaction to an infection, in which B cells generate an abundance of antibodies to try and gain control over the infection. In contrast, the “everything is okay response” (germinal center) is the body’s acknowledgment of an under-control infection where it creates a memory of the offending pathogen through memory B cells and pathogen-specific antibodies. That memory will protect the body from any subsequent infection.
Understanding what activates each response would enable investigators to design vaccines to elicit a desired immune reaction. For example, in the case of a severe infection, providing a vaccine that activates the extrafollicular response could help a patient survive. If long-term pathogen memory is needed, the vaccine would be designed to induce a germinal center response. However, this control requires knowledge of what makes these processes occur at the biological level.
“You can’t drive a car until you know the controls and how those controls work,” says Shlomchik.
After finding that IL-12 played a role in inhibiting germinal center response via T cells, their recent discovery shows that IL-12 also works to push B cells toward an extrafollicular response. Directed by high IL-12 levels, B cells produce interferon gamma and more IL-12 to create an autocrine positive feedback loop that locks in the extrafollicular response decision.
“This IL-12 switch allows us to understand how to control these two types of immune responses to our benefit,” says Elsner.
In addition to response-type control, this IL-12 switch may also help investigators understand when and why immune responses go awry. By learning how to control the switch, researchers can potentially fine-tune the extrafollicular response when vaccines do not work as intended. Additionally, the ability to turn down the extrafollicular response by switching off IL-12 could provide a novel approach to treating autoimmune diseases.