Post Views:
143
Abstract
The global commitment to decarbonizing the transport sector has resulted in an unabated growth in the markets for electric vehicles and their batteries. Consequently, the demand for battery raw materials is continuously growing. As an illustration, to meet the net-zero emissions targets, the electric vehicle market demand for lithium, cobalt, nickel, and graphite will increase 26-times, 6-times, 12-times, and 9-times respectively between 2021 and 2050. There are diverse challenges in meeting this demand, requiring the world to embrace technological and knowledge advancements and new investments without provoking conflicts between competing goals. The uncertainties in a sustainable supply of battery minerals, environmental, social and governance complexities, and geopolitical tensions throughout the whole battery value chain have shaped the global and regional concerns over the success of transport decarbonization. Here, focusing on the entire value chain of electric vehicle batteries, the approaches adopted by regulatory agencies, governments, mining companies, vehicle and battery manufacturers, and all the other stakeholders are evaluated. Bringing together all these aspects, this literature review broadens the scope for providing multifaceted solutions necessary to optimize the goal of transport decarbonization while upholding sustainability criteria. Consolidating the previously fragmented information, a solid foundation for more in-depth research on existing difficulties encountered by governmental and industrial actors is created. The outcomes of this study may serve as a baseline to develop a framework for a climate smart and resource efficient supply of batteries considering the unique impacts of individual players.