Unlocking salt resistance: sea lavender’s genetic secret revealed

Basic helix–loop–helix (bHLH) transcription factors are essential for various plant processes, including growth, development, and stress responses. Sea lavender, a recretohalophyte with unique salt glands, exhibits high salt tolerance, making it an ideal model for studying salt resistance mechanisms. With soil salinization posing an increasing threat to global agriculture, understanding the genetic basis of salt tolerance is crucial. Given these challenges, exploring the bHLH gene family in Limonium bicolor could reveal valuable applications for enhancing crop resilience and improving saline soils.

Researchers from Shandong Normal University have made significant strides in understanding sea lavender’s salt tolerance mechanisms, publishing their findings (DOI: 10.1093/hr/uhae036) in Horticulture Research on February 2, 2024. The study focuses on the genome-wide identification of bHLH transcription factors in sea lavender and their role in salt gland development. By analyzing the characteristics, localization, and phylogenetic relationships of 187 bHLH genes, the researchers uncovered their significant roles in regulating plant growth and stress responses.

The study identified 187 bHLH transcription factor genes in the Limonium bicolor genome, revealing their roles in plant growth, development, and stress responses. Bioinformatics analyses highlighted conserved bHLH domains and cis-regulatory elements linked to stress tolerance and epidermal structure development. Researchers focused on nine key bHLH genes, examining their localization and expression. CRISPR-Cas9 knockout and overexpression lines highlighted the critical role of Lb1G07934 in salt gland formation and salt resistance. Knockout lines showed enhanced salt tolerance and Na+ efflux, while overexpression lines exhibited reduced salt tolerance. These findings suggest a complex regulatory network and pave the way for future agricultural applications.

Dr. Baoshan Wang, a leading researcher in plant stress biology at Shandong Normal University, stated, “This study marks a significant advancement in our understanding of the genetic mechanisms behind salt tolerance in halophytes. The identification and functional analysis of bHLH genes in Limonium bicolor open new avenues for developing salt-tolerant crops, which is crucial for global food security amidst increasing soil salinization.”

This research has profound implications: integrating sea lavender’s salt tolerance into crops can enhance productivity on saline lands, boosting global food security and sustainable land use. The study’s genomic analysis and genetic modification approach also pave the way for improving crop resilience to various stress factors.





Original Source URL


Funding information

The National Natural Science Research Foundation of China (NSFC, projects 32370304 and 32170301) and the MOE Layout Foundation of Humanities and Social Sciences (21YJAZH108) supported this study.

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

withyou android app