The trace anomaly is one of the quantities that encodes the energy and momentum of particles built from quarks. Scientists believe the trace anomaly is crucial for keeping quarks bonded in subatomic particles. In this study, scientists calculated the trace anomaly for nucleons and pions. The calculations show that in the pion, the mass distribution is similar to the charge distribution of the neutron and in the nucleon, the mass distribution is similar to the charge distribution of the proton.
Tag: pions
Postdoc Takes Multipronged Approach to Muon Detection
2024 JSA Postdoctoral Prize Winner Debaditya Biswas will combine different particle identification methods with machine learning to detect muons hidden in a sea of pions.
Precise Measurement of Pions Confirms Understanding of Fundamental Symmetry
Scientific rules about “chiral symmetry” predict the existence of subatomic particles called pions. The lifetime of a neutrally charged pion is tied to breaking of chiral symmetry. Until recently, measurements of this lifetime have been much less precise than calculations from theory. Physicists have now measured a pion’s lifetime more precisely than ever before.
Supercomputer Calculations May Give First Look at the Structure of Two-Faced Pions
Pions consist of a quark paired to an antiquark and are the lightest particles to experience the strong force. But until recently scientists did not understand pions’ internal structure because of their short lifespan. Now, an advance in supercomputer calculations using lattice Quantum Chromodynamics may allow scientists to provide an accurate and precise description of pion structure for the first time.