“We’ve come up with a new way to more efficiently and effectively bind and target cancer cells,” said first and corresponding author Peter Chockley, Ph.D., St. Jude Department of Bone Marrow Transplantation and Cellular Therapy. “The anchor domain design is modular, universal and cross-species. We showed it worked in multiple CARs and multiple immune cell types – including both Natural Killer (NK) and T cells.”
Scientists can reprogram human immune cells to target cancer cells by adding engineered CAR proteins to their surface. CAR T cells have shown some success in the clinic treating certain cancers, such as relapsed leukemia. However, CAR T cells have failed to deliver for solid tumors, due partially to problems with immune cell activation. The St. Jude group found a way to “anchor” the CAR molecule within immune cells, allowing the cells to become activated more easily and kill cancer more effectively than conventional CARs. The anchored CARs increased survival in animal models of multiple tumor types, including lung, bone and brain cancers.
“The anchor domain discovery is easily translatable into early phase clinical testing,” said senior author Stephen Gottschalk, M.D., St. Jude Department of Bone Marrow Transplantation and Cellular Therapy chair. “It doesn’t require any other new technology. We strongly believe that this approach needs to get tested in the clinic because no one has tried it before, and it looks very promising in our preclinical work.”
Carefully structured CARs kill cancers better
CARs are the key molecule to the cancer-killing process. The outside of the molecule recognizes a protein on the cancer cell. This forms a complex of molecules and proteins between the two cells called the immune synapse. Once the immune synapse is formed, the part of the CAR inside of the immune cell receives signals from the portions outside the cell. These interactions send the ‘go’ signal to activate and kill the cancer cell, however these complex communications can be difficult for conventional CAR T and NK cells to interpret.
“Our approach is different because it focuses on organization,” Chockley said. “CAR structure, when it forms the immune synapse, is very disorganized. The anchoring domain we added organizes the internal scaffolding and makes a better signal, and then brings in other more natural adaptor signaling proteins. The simple addition of organization improves CARs dramatically.”
“The most attractive thing about this approach,” said senior author Stephen Gottschalk, M.D., St. Jude Department of Bone Marrow Transplantation and Cellular Therapy chair, “Is that you can put it into any CAR you like. The engineering is simple and easily translatable into lots of different systems.”
“There’s a lot more to an immune cell-cancer cell interaction than we’ve been working with,” Chockley said. “We’re entering a new design realm with this domain. We have plenty to do now. There’s a lot to explore.”
Authors and funding
The study’s other authors are Jorge Ibanez-Vega, Giedre Krenciute and Lindsay Talbot, all of St. Jude.
The study was supported by grants from the St. Jude Sumara Fellowship, ChadTough Defeat DIPG Foundation, National Institute of Neurological Disorders and Stroke (R01NS121249), the Rally Foundation for Childhood Cancer Research, The Garwood Postdoctoral Fellowship, the National Cancer Institute (P30 CA021765), the National Institutes of Health grants (P01CA096832 and R50CA211481) and ALSAC, the fundraising and awareness organization of St. Jude.